The University of Chicago Header Logo

Connection

Gregory Karczmar to Reproducibility of Results

This is a "connection" page, showing publications Gregory Karczmar has written about Reproducibility of Results.
Connection Strength

1.723
  1. Self-supervised multicontrast super-resolution for diffusion-weighted prostate MRI. Magn Reson Med. 2024 Jul; 92(1):319-331.
    View in: PubMed
    Score: 0.146
  2. High spectral and spatial resolution MRI of prostate cancer: a pilot study. Magn Reson Med. 2021 09; 86(3):1505-1513.
    View in: PubMed
    Score: 0.120
  3. Signal intensity form of the Tofts model for quantitative analysis of prostate dynamic contrast enhanced MRI data. Phys Med Biol. 2021 01 22; 66(2):025002.
    View in: PubMed
    Score: 0.118
  4. A compact solution for estimation of physiological parameters from ultrafast prostate dynamic contrast enhanced MRI. Phys Med Biol. 2019 08 07; 64(15):155012.
    View in: PubMed
    Score: 0.107
  5. Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI. Tomography. 2019 06; 5(2):260-265.
    View in: PubMed
    Score: 0.105
  6. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis. Acad Radiol. 2016 09; 23(9):1137-44.
    View in: PubMed
    Score: 0.086
  7. Arterial input functions (AIFs) measured directly from arteries with low and standard doses of contrast agent, and AIFs derived from reference tissues. Magn Reson Imaging. 2016 Feb; 34(2):197-203.
    View in: PubMed
    Score: 0.082
  8. Correlation of In Vivo and Ex Vivo ADC and T2 of In Situ and Invasive Murine Mammary Cancers. PLoS One. 2015; 10(7):e0129212.
    View in: PubMed
    Score: 0.081
  9. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0?T: a pilot study. Br J Radiol. 2015 May; 88(1049):20150021.
    View in: PubMed
    Score: 0.079
  10. Quantitative evaluation of internal marks made using MRgFUS as seen on MRI, CT, US, and digital color images - a pilot study. Phys Med. 2014 Dec; 30(8):941-6.
    View in: PubMed
    Score: 0.074
  11. Hybrid multidimensional T(2) and diffusion-weighted MRI for prostate cancer detection. J Magn Reson Imaging. 2014 Apr; 39(4):781-8.
    View in: PubMed
    Score: 0.070
  12. HiSStology: high spectral and spatial resolution magnetic resonance imaging detection of vasculature validated by histology and micro-computed tomography. Mol Imaging. 2011 Jun; 10(3):187-96.
    View in: PubMed
    Score: 0.059
  13. Clinical implementation of a multislice high spectral and spatial resolution-based MRI sequence to achieve unilateral full-breast coverage. Magn Reson Imaging. 2010 Jan; 28(1):16-21.
    View in: PubMed
    Score: 0.053
  14. A new approach to analysis of the impulse response function (IRF) in dynamic contrast-enhanced MRI (DCEMRI): a simulation study. Magn Reson Med. 2009 Jul; 62(1):229-39.
    View in: PubMed
    Score: 0.053
  15. Sensitivity to tumor microvasculature without contrast agents in high spectral and spatial resolution MR images. Magn Reson Med. 2009 Feb; 61(2):291-8.
    View in: PubMed
    Score: 0.051
  16. Fat suppression with spectrally selective inversion vs. high spectral and spatial resolution MRI of breast lesions: qualitative and quantitative comparisons. J Magn Reson Imaging. 2006 Dec; 24(6):1311-5.
    View in: PubMed
    Score: 0.044
  17. Comparison of high-resolution echo-planar spectroscopic imaging with conventional MR imaging of prostate tumors in mice. NMR Biomed. 2005 Aug; 18(5):285-92.
    View in: PubMed
    Score: 0.040
  18. Comparing Radiologist Performance in Diagnosing Clinically Significant Prostate Cancer with Multiparametric versus Hybrid Multidimensional MRI. Radiology. 2022 11; 305(2):399-407.
    View in: PubMed
    Score: 0.033
  19. Effectiveness of Dynamic Contrast Enhanced MRI with a Split Dose of Gadoterate Meglumine for Detection of Prostate Cancer. Acad Radiol. 2022 06; 29(6):796-803.
    View in: PubMed
    Score: 0.031
  20. Ultrafast Dynamic Contrast-Enhanced Breast MRI: Kinetic Curve Assessment Using Empirical Mathematical Model Validated with Histological Microvessel Density. Acad Radiol. 2019 07; 26(7):e141-e149.
    View in: PubMed
    Score: 0.025
  21. A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging. 1998 Sep-Oct; 8(5):1126-34.
    View in: PubMed
    Score: 0.025
  22. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018 06; 287(3):864-873.
    View in: PubMed
    Score: 0.024
  23. Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate. Abdom Imaging. 2015 Oct; 40(7):2523-8.
    View in: PubMed
    Score: 0.020
  24. Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate. Acad Radiol. 2014 May; 21(5):569-77.
    View in: PubMed
    Score: 0.019
  25. Potential of computer-aided diagnosis of high spectral and spatial resolution (HiSS) MRI in the classification of breast lesions. J Magn Reson Imaging. 2014 Jan; 39(1):59-67.
    View in: PubMed
    Score: 0.018
  26. Do we really need contrast agents? Eur J Radiol. 2012 Sep; 81 Suppl 1:S99-100.
    View in: PubMed
    Score: 0.016
  27. The diverse pathology and kinetics of mass, nonmass, and focus enhancement on MR imaging of the breast. J Magn Reson Imaging. 2011 Jun; 33(6):1382-9.
    View in: PubMed
    Score: 0.015
  28. The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data. Phys Med Biol. 2010 Aug 21; 55(16):4871-83.
    View in: PubMed
    Score: 0.014
  29. The influence of temporal resolution in determining pharmacokinetic parameters from DCE-MRI data. Magn Reson Med. 2010 Mar; 63(3):811-6.
    View in: PubMed
    Score: 0.014
  30. Relating dose of contrast media administered to uptake and washout of malignant lesions on DCEMRI of the breast. Acad Radiol. 2010 Jan; 17(1):24-30.
    View in: PubMed
    Score: 0.014
  31. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn's disease pilot study. Acad Radiol. 2009 Oct; 16(10):1223-30.
    View in: PubMed
    Score: 0.013
  32. Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magn Reson Med. 2009 Apr; 61(4):851-9.
    View in: PubMed
    Score: 0.013
  33. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn's disease. Acad Radiol. 2009 May; 16(5):597-603.
    View in: PubMed
    Score: 0.013
  34. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement? Med Phys. 2008 Jul; 35(7):3102-9.
    View in: PubMed
    Score: 0.012
  35. Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: a sensitivity and specificity study. Magn Reson Med. 2008 Apr; 59(4):747-54.
    View in: PubMed
    Score: 0.012
  36. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med. 2007 Dec; 58(6):1266-75.
    View in: PubMed
    Score: 0.012
  37. Multi-slice DCE-MRI data using P760 distinguishes between metastatic and non-metastatic rodent prostate tumors. MAGMA. 2006 Feb; 19(1):15-21.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.