The University of Chicago Header Logo

Connection

Gregory Karczmar to Magnetic Resonance Imaging

This is a "connection" page, showing publications Gregory Karczmar has written about Magnetic Resonance Imaging.
Connection Strength

13.766
  1. Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+ breast cancer. Magn Reson Imaging. 2023 Dec; 104:9-15.
    View in: PubMed
    Score: 0.378
  2. Pharmacokinetic Analysis of Enhancement-Constrained Acceleration (ECA) reconstruction-based high temporal resolution breast DCE-MRI. PLoS One. 2023; 18(6):e0286123.
    View in: PubMed
    Score: 0.374
  3. Characterization of Effects of Compressed Sensing on High Spectral and Spatial Resolution (HiSS) MRI with Comparison to SENSE. Tomography. 2023 03 19; 9(2):693-705.
    View in: PubMed
    Score: 0.367
  4. Validation of Prostate Tissue Composition by Using Hybrid Multidimensional MRI: Correlation with Histologic Findings. Radiology. 2022 02; 302(2):368-377.
    View in: PubMed
    Score: 0.334
  5. High spectral and spatial resolution MRI of prostate cancer: a pilot study. Magn Reson Med. 2021 09; 86(3):1505-1513.
    View in: PubMed
    Score: 0.323
  6. Signal intensity form of the Tofts model for quantitative analysis of prostate dynamic contrast enhanced MRI data. Phys Med Biol. 2021 01 22; 66(2):025002.
    View in: PubMed
    Score: 0.316
  7. A compact solution for estimation of physiological parameters from ultrafast prostate dynamic contrast enhanced MRI. Phys Med Biol. 2019 08 07; 64(15):155012.
    View in: PubMed
    Score: 0.286
  8. Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI. Tomography. 2019 06; 5(2):260-265.
    View in: PubMed
    Score: 0.282
  9. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Invest Radiol. 2018 10; 53(10):609-615.
    View in: PubMed
    Score: 0.270
  10. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients. Phys Med Biol. 2018 01 30; 63(3):03NT01.
    View in: PubMed
    Score: 0.257
  11. Dynamic field-of-view imaging to increase temporal resolution in the early phase of contrast media uptake in breast DCE-MRI: A feasibility study. Med Phys. 2018 Mar; 45(3):1050-1058.
    View in: PubMed
    Score: 0.257
  12. MRI reveals increased tumorigenesis following high fat feeding in a mouse model of triple-negative breast cancer. NMR Biomed. 2017 Oct; 30(10).
    View in: PubMed
    Score: 0.247
  13. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer. Magn Reson Imaging. 2017 07; 40:48-52.
    View in: PubMed
    Score: 0.243
  14. Fast bilateral breast coverage with high spectral and spatial resolution (HiSS) MRI at 3T. J Magn Reson Imaging. 2017 11; 46(5):1341-1348.
    View in: PubMed
    Score: 0.242
  15. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment. AJR Am J Roentgenol. 2016 Nov; 207(5):1159-1166.
    View in: PubMed
    Score: 0.233
  16. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis. Acad Radiol. 2016 09; 23(9):1137-44.
    View in: PubMed
    Score: 0.230
  17. Correlation of In Vivo and Ex Vivo ADC and T2 of In Situ and Invasive Murine Mammary Cancers. PLoS One. 2015; 10(7):e0129212.
    View in: PubMed
    Score: 0.216
  18. MRI accurately identifies early murine mammary cancers and reliably differentiates between in situ and invasive cancer: correlation of MRI with histology. NMR Biomed. 2015 Sep; 28(9):1078-86.
    View in: PubMed
    Score: 0.215
  19. B1 and T1 mapping of the breast with a reference tissue method. Magn Reson Med. 2016 Apr; 75(4):1565-73.
    View in: PubMed
    Score: 0.214
  20. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0?T: a pilot study. Br J Radiol. 2015 May; 88(1049):20150021.
    View in: PubMed
    Score: 0.211
  21. X-ray fluorescence microscopy demonstrates preferential accumulation of a vanadium-based magnetic resonance imaging contrast agent in murine colonic tumors. Mol Imaging. 2015; 14.
    View in: PubMed
    Score: 0.208
  22. Mammary cancer initiation and progression studied with magnetic resonance imaging. Breast Cancer Res. 2014 Dec 16; 16(6):495.
    View in: PubMed
    Score: 0.207
  23. Quantitative evaluation of internal marks made using MRgFUS as seen on MRI, CT, US, and digital color images - a pilot study. Phys Med. 2014 Dec; 30(8):941-6.
    View in: PubMed
    Score: 0.199
  24. Classification of breast lesions pre-contrast injection using water resonance lineshape analysis. NMR Biomed. 2013 May; 26(5):569-77.
    View in: PubMed
    Score: 0.180
  25. Hyperthermically induced changes in high spectral and spatial resolution MR images of tumor tissue--a pilot study. Phys Med Biol. 2012 May 07; 57(9):2653-66.
    View in: PubMed
    Score: 0.172
  26. T(2)* relaxation times of intraductal murine mammary cancer, invasive mammary cancer, and normal mammary gland. Med Phys. 2012 Mar; 39(3):1309-13.
    View in: PubMed
    Score: 0.171
  27. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images versus contrast enhanced fat-suppressed images. Acad Radiol. 2011 Dec; 18(12):1467-74.
    View in: PubMed
    Score: 0.166
  28. HiSStology: high spectral and spatial resolution magnetic resonance imaging detection of vasculature validated by histology and micro-computed tomography. Mol Imaging. 2011 Jun; 10(3):187-96.
    View in: PubMed
    Score: 0.159
  29. In vivo MRI of early stage mammary cancers and the normal mouse mammary gland. NMR Biomed. 2011 Aug; 24(7):880-7.
    View in: PubMed
    Score: 0.158
  30. Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med. 2010 Dec; 64(6):1821-6.
    View in: PubMed
    Score: 0.157
  31. Ductal carcinoma in situ: X-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. Radiology. 2009 Nov; 253(2):399-406.
    View in: PubMed
    Score: 0.145
  32. Can DCEMRI assess the effect of green tea on the angiogenic properties of rodent prostate tumors? Phys Med. 2010 Apr; 26(2):111-6.
    View in: PubMed
    Score: 0.143
  33. Clinical implementation of a multislice high spectral and spatial resolution-based MRI sequence to achieve unilateral full-breast coverage. Magn Reson Imaging. 2010 Jan; 28(1):16-21.
    View in: PubMed
    Score: 0.143
  34. A new approach to analysis of the impulse response function (IRF) in dynamic contrast-enhanced MRI (DCEMRI): a simulation study. Magn Reson Med. 2009 Jul; 62(1):229-39.
    View in: PubMed
    Score: 0.142
  35. Sensitivity to tumor microvasculature without contrast agents in high spectral and spatial resolution MR images. Magn Reson Med. 2009 Feb; 61(2):291-8.
    View in: PubMed
    Score: 0.138
  36. Magnetic resonance imaging of the natural history of in situ mammary neoplasia in transgenic mice: a pilot study. Breast Cancer Res. 2009; 11(5):R65.
    View in: PubMed
    Score: 0.137
  37. High spectral and spatial resolution MRI of age-related changes in murine prostate. Magn Reson Med. 2008 Sep; 60(3):575-81.
    View in: PubMed
    Score: 0.134
  38. Quantitative analysis of water proton spectral lineshape: a novel source of contrast in MRI. Phys Med Biol. 2008 Sep 07; 53(17):4509-22.
    View in: PubMed
    Score: 0.133
  39. Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology. 2007 Dec; 245(3):684-91.
    View in: PubMed
    Score: 0.127
  40. Fat suppression with spectrally selective inversion vs. high spectral and spatial resolution MRI of breast lesions: qualitative and quantitative comparisons. J Magn Reson Imaging. 2006 Dec; 24(6):1311-5.
    View in: PubMed
    Score: 0.119
  41. Fourier components of inhomogeneously broadened water resonances in breast: a new source of MRI contrast. Magn Reson Med. 2004 Jul; 52(1):193-6.
    View in: PubMed
    Score: 0.100
  42. New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med. 2004 Mar; 51(3):487-94.
    View in: PubMed
    Score: 0.098
  43. Multi-model sequential analysis of MRI data for microstructure prediction in heterogeneous tissue. Sci Rep. 2023 10 01; 13(1):16486.
    View in: PubMed
    Score: 0.095
  44. Four-quadrant vector mapping of hybrid multidimensional MRI data for the diagnosis of prostate cancer. Med Phys. 2024 Mar; 51(3):2057-2065.
    View in: PubMed
    Score: 0.095
  45. Parametric maps of spatial two-tissue compartment model for prostate dynamic contrast enhanced MRI - comparison with the standard tofts model in the diagnosis of prostate cancer. Phys Eng Sci Med. 2023 Sep; 46(3):1215-1226.
    View in: PubMed
    Score: 0.094
  46. Using high spectral and spatial resolution bold MRI to choose the optimal oxygenating treatment for individual cancer patients. Adv Exp Med Biol. 2003; 530:433-40.
    View in: PubMed
    Score: 0.091
  47. Breast MR imaging with high spectral and spatial resolutions: preliminary experience. Radiology. 2002 Aug; 224(2):577-85.
    View in: PubMed
    Score: 0.088
  48. Spectrally inhomogeneous effects of contrast agents in breast lesion detected by high spectral and spatial resolution MRI. Acad Radiol. 2002 Aug; 9 Suppl 2:S352-4.
    View in: PubMed
    Score: 0.088
  49. Functional and anatomic imaging of tumor vasculature: high-resolution MR spectroscopic imaging combined with a superparamagnetic contrast agent. Acad Radiol. 2002 May; 9 Suppl 1:S115-8.
    View in: PubMed
    Score: 0.086
  50. Differences Between Ipsilateral and Contralateral Early Parenchymal Enhancement Kinetics Predict Response of Breast Cancer to Neoadjuvant Therapy. Acad Radiol. 2022 10; 29(10):1469-1479.
    View in: PubMed
    Score: 0.086
  51. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI. NMR Biomed. 2002 Feb; 15(1):28-36.
    View in: PubMed
    Score: 0.085
  52. Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI. PLoS One. 2021; 16(10):e0258621.
    View in: PubMed
    Score: 0.083
  53. An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom. Med Image Anal. 2021 10; 73:102186.
    View in: PubMed
    Score: 0.082
  54. Comparison of DCE-MRI of murine model cancers with a low dose and high dose of contrast agent. Phys Med. 2021 Jan; 81:31-39.
    View in: PubMed
    Score: 0.079
  55. Uptake of a superparamagnetic contrast agent imaged by MR with high spectral and spatial resolution. Magn Reson Med. 2000 May; 43(5):633-9.
    View in: PubMed
    Score: 0.075
  56. MRI measurements correctly predict the relative effects of tumor oxygenating agents on hypoxic fraction in rodent BA1112 tumors. Int J Radiat Oncol Biol Phys. 2000 May 01; 47(2):481-8.
    View in: PubMed
    Score: 0.075
  57. Low-dose imaging technique (LITE) MRI: initial experience in breast imaging. Br J Radiol. 2019 Nov; 92(1103):20190302.
    View in: PubMed
    Score: 0.071
  58. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol (NY). 2019 06; 44(6):2233-2243.
    View in: PubMed
    Score: 0.071
  59. Diagnosis of Prostate Cancer by Use of MRI-Derived Quantitative Risk Maps: A Feasibility Study. AJR Am J Roentgenol. 2019 08; 213(2):W66-W75.
    View in: PubMed
    Score: 0.070
  60. Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology. AJR Am J Roentgenol. 2019 02; 212(2):351-356.
    View in: PubMed
    Score: 0.068
  61. Multiparametric MRI Features and Pathologic Outcome of Wedge-Shaped Lesions in the Peripheral Zone on T2-Weighted Images of the Prostate. AJR Am J Roentgenol. 2019 01; 212(1):124-129.
    View in: PubMed
    Score: 0.068
  62. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med. 2019 03; 81(3):2147-2160.
    View in: PubMed
    Score: 0.068
  63. Evaluation of Focal Laser Ablation of Prostate Cancer Using High Spectral and Spatial Resolution Imaging: A Pilot Study. J Magn Reson Imaging. 2019 05; 49(5):1374-1380.
    View in: PubMed
    Score: 0.067
  64. Ultrafast Dynamic Contrast-Enhanced Breast MRI: Kinetic Curve Assessment Using Empirical Mathematical Model Validated with Histological Microvessel Density. Acad Radiol. 2019 07; 26(7):e141-e149.
    View in: PubMed
    Score: 0.067
  65. A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging. 1998 Sep-Oct; 8(5):1126-34.
    View in: PubMed
    Score: 0.067
  66. Intensive Surveillance with Biannual Dynamic Contrast-Enhanced Magnetic Resonance Imaging Downstages Breast Cancer in BRCA1 Mutation Carriers. Clin Cancer Res. 2019 03 15; 25(6):1786-1794.
    View in: PubMed
    Score: 0.067
  67. Fast Temporal Resolution Dynamic Contrast-Enhanced MRI: Histogram Analysis Versus Visual Analysis for Differentiating Benign and Malignant Breast Lesions. AJR Am J Roentgenol. 2018 10; 211(4):933-939.
    View in: PubMed
    Score: 0.067
  68. MRI Findings After MRI-Guided Focal Laser Ablation of Prostate Cancer. AJR Am J Roentgenol. 2018 09; 211(3):595-604.
    View in: PubMed
    Score: 0.066
  69. Performance of T2 Maps in the Detection of Prostate Cancer. Acad Radiol. 2019 01; 26(1):15-21.
    View in: PubMed
    Score: 0.066
  70. Fast spectroscopic imaging of water and fat resonances to improve the quality of MR images. Acad Radiol. 1998 Apr; 5(4):269-75.
    View in: PubMed
    Score: 0.065
  71. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018 06; 287(3):864-873.
    View in: PubMed
    Score: 0.064
  72. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets. PLoS One. 2018; 13(1):e0190929.
    View in: PubMed
    Score: 0.064
  73. Comparison of region-of-interest-averaged and pixel-averaged analysis of DCE-MRI data based on simulations and pre-clinical experiments. Phys Med Biol. 2017 Sep 05; 62(18):N445-N459.
    View in: PubMed
    Score: 0.063
  74. In vivo imaging of extraction fraction of low molecular weight MR contrast agents and perfusion rate in rodent tumors. Magn Reson Med. 1997 Aug; 38(2):259-68.
    View in: PubMed
    Score: 0.062
  75. Spectral characterization of tissues in high spectral and spatial resolution MR images: Implications for a classification-based synthetic CT algorithm. Med Phys. 2017 May; 44(5):1865-1875.
    View in: PubMed
    Score: 0.061
  76. Value of breast MRI for patients with a biopsy showing atypical ductal hyperplasia (ADH). J Magn Reson Imaging. 2017 12; 46(6):1738-1747.
    View in: PubMed
    Score: 0.061
  77. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Pharmacodynamic Biomarker for Pazopanib in Metastatic Renal Carcinoma. Clin Genitourin Cancer. 2017 04; 15(2):207-212.
    View in: PubMed
    Score: 0.058
  78. Dynamic contrast measurements in rodent model tumors. Acad Radiol. 1996 Aug; 3 Suppl 2:S384-6.
    View in: PubMed
    Score: 0.058
  79. Benign Conditions That Mimic Prostate Carcinoma: MR Imaging Features with Histopathologic Correlation. Radiographics. 2016 Jan-Feb; 36(1):162-75.
    View in: PubMed
    Score: 0.055
  80. 3D high spectral and spatial resolution imaging of ex vivo mouse brain. Med Phys. 2015 Mar; 42(3):1463-72.
    View in: PubMed
    Score: 0.053
  81. Changes in T2*-weighted images during hyperoxia differentiate tumors from normal tissue. Magn Reson Med. 1995 Mar; 33(3):318-25.
    View in: PubMed
    Score: 0.053
  82. Radiofrequency magnetic field gradient echoes have reduced sensitivity to susceptibility gradients. Magn Reson Imaging. 1995; 13(6):791-7.
    View in: PubMed
    Score: 0.052
  83. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media. Magn Reson Imaging. 2015 Jan; 33(1):161-5.
    View in: PubMed
    Score: 0.051
  84. Magnetic resonance measurement of response to hyperoxia differentiates tumors from normal tissue and may be sensitive to oxygen consumption. Invest Radiol. 1994 Jun; 29 Suppl 2:S161-3.
    View in: PubMed
    Score: 0.050
  85. Prospects for assessment of the effects of electrical injury by magnetic resonance. Ann N Y Acad Sci. 1994 May 31; 720:176-80.
    View in: PubMed
    Score: 0.050
  86. Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate. Acad Radiol. 2014 May; 21(5):569-77.
    View in: PubMed
    Score: 0.050
  87. Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: a pilot study. Med Phys. 2014 Jan; 41(1):012303.
    View in: PubMed
    Score: 0.049
  88. Magnetic resonance imaging of rodent tumors using radiofrequency gradient echoes. Magn Reson Imaging. 1994; 12(6):881-93.
    View in: PubMed
    Score: 0.049
  89. MRI of neonatal necrotizing enterocolitis in a rodent model. NMR Biomed. 2014 Mar; 27(3):272-9.
    View in: PubMed
    Score: 0.048
  90. Prostate volumes derived from MRI and volume-adjusted serum prostate-specific antigen: correlation with Gleason score of prostate cancer. AJR Am J Roentgenol. 2013 Nov; 201(5):1041-8.
    View in: PubMed
    Score: 0.048
  91. Potential of computer-aided diagnosis of high spectral and spatial resolution (HiSS) MRI in the classification of breast lesions. J Magn Reson Imaging. 2014 Jan; 39(1):59-67.
    View in: PubMed
    Score: 0.047
  92. Comparing post-operative human breast specimen radiograph and MRI in lesion margin and volume assessment. J Appl Clin Med Phys. 2012 Nov 08; 13(6):3802.
    View in: PubMed
    Score: 0.045
  93. Do we really need contrast agents? Eur J Radiol. 2012 Sep; 81 Suppl 1:S99-100.
    View in: PubMed
    Score: 0.044
  94. Monitoring anti-angiogenic therapy in colorectal cancer murine model using dynamic contrast-enhanced MRI: comparing pixel-by-pixel with region of interest analysis. Technol Cancer Res Treat. 2013 Feb; 12(1):71-8.
    View in: PubMed
    Score: 0.044
  95. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol. 2012 Jul; 22(7):1451-64.
    View in: PubMed
    Score: 0.043
  96. Safety limitations of MR-HIFU treatment near interfaces: a phantom validation. J Appl Clin Med Phys. 2012 Mar 08; 13(2):3739.
    View in: PubMed
    Score: 0.043
  97. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011 Dec; 197(6):1382-90.
    View in: PubMed
    Score: 0.042
  98. High-resolution MRI of excised human prostate specimens acquired with 9.4T in detection and identification of cancers: validation of a technique. J Magn Reson Imaging. 2011 Oct; 34(4):956-61.
    View in: PubMed
    Score: 0.041
  99. The diverse pathology and kinetics of mass, nonmass, and focus enhancement on MR imaging of the breast. J Magn Reson Imaging. 2011 Jun; 33(6):1382-9.
    View in: PubMed
    Score: 0.041
  100. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol. 2011 Jul; 21(7):1374-82.
    View in: PubMed
    Score: 0.040
  101. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study. Phys Med Biol. 2010 Oct 07; 55(19):N473-85.
    View in: PubMed
    Score: 0.039
  102. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2010 Dec; 257(3):715-23.
    View in: PubMed
    Score: 0.039
  103. Echo-planar spectroscopic imaging (EPSI) of the water resonance structure in human breast using sensitivity encoding (SENSE). Magn Reson Med. 2010 Jun; 63(6):1557-63.
    View in: PubMed
    Score: 0.038
  104. Comparison of quantitative parameters in cervix cancer measured by dynamic contrast-enhanced MRI and CT. Magn Reson Med. 2010 Jun; 63(6):1601-9.
    View in: PubMed
    Score: 0.038
  105. High-resolution magnetic resonance colonography and dynamic contrast-enhanced magnetic resonance imaging in a murine model of colitis. Magn Reson Med. 2010 Apr; 63(4):922-9.
    View in: PubMed
    Score: 0.037
  106. Relating dose of contrast media administered to uptake and washout of malignant lesions on DCEMRI of the breast. Acad Radiol. 2010 Jan; 17(1):24-30.
    View in: PubMed
    Score: 0.037
  107. Kinetic curves of malignant lesions are not consistent across MRI systems: need for improved standardization of breast dynamic contrast-enhanced MRI acquisition. AJR Am J Roentgenol. 2009 Sep; 193(3):832-9.
    View in: PubMed
    Score: 0.036
  108. Use of radio-frequency field gradients to image blood flow and perfusion in vivo. Radiology. 1989 Aug; 172(2):363-6.
    View in: PubMed
    Score: 0.036
  109. Characterization of response to radiation mediated gene therapy by means of multimodality imaging. Magn Reson Med. 2009 Aug; 62(2):348-56.
    View in: PubMed
    Score: 0.036
  110. New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem. 2009 Nov; 14(8):1187-97.
    View in: PubMed
    Score: 0.036
  111. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn's disease pilot study. Acad Radiol. 2009 Oct; 16(10):1223-30.
    View in: PubMed
    Score: 0.035
  112. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol. 2008 Oct 01; 26(28):4572-8.
    View in: PubMed
    Score: 0.034
  113. Detection of in situ mammary cancer in a transgenic mouse model: in vitro and in vivo MRI studies demonstrate histopathologic correlation. Phys Med Biol. 2008 Oct 07; 53(19):5481-93.
    View in: PubMed
    Score: 0.034
  114. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement? Med Phys. 2008 Jul; 35(7):3102-9.
    View in: PubMed
    Score: 0.033
  115. Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: a sensitivity and specificity study. Magn Reson Med. 2008 Apr; 59(4):747-54.
    View in: PubMed
    Score: 0.033
  116. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med. 2007 Dec; 58(6):1266-75.
    View in: PubMed
    Score: 0.032
  117. Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magn Reson Imaging. 2007 Jun; 25(5):593-603.
    View in: PubMed
    Score: 0.030
  118. Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils. Phys Med Biol. 2006 Dec 21; 51(24):N451-9.
    View in: PubMed
    Score: 0.030
  119. Multi-slice DCE-MRI data using P760 distinguishes between metastatic and non-metastatic rodent prostate tumors. MAGMA. 2006 Feb; 19(1):15-21.
    View in: PubMed
    Score: 0.028
  120. MRI of perfluorocarbon emulsion kinetics in rodent mammary tumours. Phys Med Biol. 2006 Jan 21; 51(2):211-20.
    View in: PubMed
    Score: 0.028
  121. Magnetic resonance imaging of changes in muscle tissues after membrane trauma. Ann N Y Acad Sci. 2005 Dec; 1066:272-85.
    View in: PubMed
    Score: 0.028
  122. Comparison of high-resolution echo-planar spectroscopic imaging with conventional MR imaging of prostate tumors in mice. NMR Biomed. 2005 Aug; 18(5):285-92.
    View in: PubMed
    Score: 0.027
  123. Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med. 2004 Nov; 52(5):1110-7.
    View in: PubMed
    Score: 0.026
  124. Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time. J Magn Reson Imaging. 2004 Jul; 20(1):122-8.
    View in: PubMed
    Score: 0.025
  125. Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers. Abdom Radiol (NY). 2023 10; 48(10):3216-3228.
    View in: PubMed
    Score: 0.023
  126. An Interactive App with Multi-parametric MRI - Whole-Mount Histology Correlation for Enhanced Prostate MRI Training of Radiology Residents. Acad Radiol. 2023 09; 30 Suppl 1:S21-S29.
    View in: PubMed
    Score: 0.023
  127. Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med. 2003 Apr; 49(4):682-91.
    View in: PubMed
    Score: 0.023
  128. Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements. Int J Radiat Oncol Biol Phys. 2002 Nov 15; 54(4):1202-9.
    View in: PubMed
    Score: 0.022
  129. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002 Oct; 16(4):430-50.
    View in: PubMed
    Score: 0.022
  130. Effects of constant frequency noise in magnetic resonance imaging with nonuniform k-space sampling. Med Phys. 2002 Aug; 29(8):1832-8.
    View in: PubMed
    Score: 0.022
  131. Comparing Radiologist Performance in Diagnosing Clinically Significant Prostate Cancer with Multiparametric versus Hybrid Multidimensional MRI. Radiology. 2022 11; 305(2):399-407.
    View in: PubMed
    Score: 0.022
  132. Physically implausible signals as a quantitative quality assessment metric in prostate diffusion-weighted MR imaging. Abdom Radiol (NY). 2022 07; 47(7):2500-2508.
    View in: PubMed
    Score: 0.022
  133. Imaging spin probe distribution in the tumor of a living mouse with 250 MHz EPR: correlation with BOLD MRI. Magn Reson Med. 2002 Apr; 47(4):634-8.
    View in: PubMed
    Score: 0.021
  134. Histological validation of prostate tissue composition measurement using hybrid multi-dimensional MRI: agreement with pathologists' measures. Abdom Radiol (NY). 2022 02; 47(2):801-813.
    View in: PubMed
    Score: 0.021
  135. Effectiveness of Dynamic Contrast Enhanced MRI with a Split Dose of Gadoterate Meglumine for Detection of Prostate Cancer. Acad Radiol. 2022 06; 29(6):796-803.
    View in: PubMed
    Score: 0.021
  136. Robustness of radiomic features of benign breast lesions and hormone receptor positive/HER2-negative cancers across DCE-MR magnet strengths. Magn Reson Imaging. 2021 10; 82:111-121.
    View in: PubMed
    Score: 0.020
  137. Improving Tumor Hypoxia Location in 18F-Misonidazole PET with Dynamic Contrast-enhanced MRI Using Quantitative Electron Paramagnetic Resonance Partial Oxygen Pressure Images. Radiol Imaging Cancer. 2021 03; 3(2):e200104.
    View in: PubMed
    Score: 0.020
  138. T2*-weighted MRI as a non-contrast-enhanced method for assessment of focal laser ablation zone extent in prostate cancer thermotherapy. Eur Radiol. 2021 Jan; 31(1):325-332.
    View in: PubMed
    Score: 0.019
  139. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med. 2021 02; 85(2):667-677.
    View in: PubMed
    Score: 0.019
  140. Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics. IEEE Trans Med Imaging. 2020 09; 39(9):2760-2771.
    View in: PubMed
    Score: 0.019
  141. Effect of Echo Times on Prostate Cancer Detection on T2-Weighted Images. Acad Radiol. 2020 11; 27(11):1555-1563.
    View in: PubMed
    Score: 0.018
  142. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia. 2000 Jan-Apr; 2(1-2):152-65.
    View in: PubMed
    Score: 0.018
  143. Magnetic Resonance Imaging and Molecular Characterization of a Hormone-Mediated Murine Model of Prostate Enlargement and Bladder Outlet Obstruction. Am J Pathol. 2017 Nov; 187(11):2378-2387.
    View in: PubMed
    Score: 0.016
  144. Differentiating between T1 and T2* changes caused by gadopentetate dimeglumine in the kidney by using a double-echo dynamic MR imaging sequence. J Magn Reson Imaging. 1996 Sep-Oct; 6(5):764-8.
    View in: PubMed
    Score: 0.015
  145. IV Administered Gadodiamide Enters the Lumen of the Prostatic Glands: X-Ray Fluorescence Microscopy Examination of a Mouse Model. AJR Am J Roentgenol. 2015 Sep; 205(3):W313-9.
    View in: PubMed
    Score: 0.014
  146. Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumours. NMR Biomed. 1994 Mar; 7(1-2):3-11.
    View in: PubMed
    Score: 0.012
  147. The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data. Phys Med Biol. 2010 Aug 21; 55(16):4871-83.
    View in: PubMed
    Score: 0.010
  148. Comparison of 31P MRS and 1H MRI at 1.5 and 2.0 T. Magn Reson Med. 1990 Feb; 13(2):228-38.
    View in: PubMed
    Score: 0.009
  149. Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin Cancer Res. 2004 Jun 15; 10(12 Pt 1):4048-54.
    View in: PubMed
    Score: 0.006
  150. Measurement of differences in pO2 in response to perfluorocarbon/carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry. Radiat Res. 1996 May; 145(5):610-8.
    View in: PubMed
    Score: 0.004
  151. Image-guided 31P magnetic resonance spectroscopy of normal and transplanted human kidneys. Kidney Int. 1990 Aug; 38(2):294-300.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.