The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Gene H. Kim and Nitasha Sarswat.
Connection Strength

1.892
  1. The prognostic role of advanced hemodynamic variables in patients with left ventricular assist devices. Artif Organs. 2023 Mar; 47(3):574-581.
    View in: PubMed
    Score: 0.057
  2. Aortic pulsatility index predicts clinical outcomes in heart failure: a sub-analysis of the ESCAPE trial. ESC Heart Fail. 2021 04; 8(2):1522-1530.
    View in: PubMed
    Score: 0.050
  3. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Nov/Dec; 66(10):1127-1136.
    View in: PubMed
    Score: 0.049
  4. Correction to: A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange. J Artif Organs. 2020 Sep; 23(3):302.
    View in: PubMed
    Score: 0.049
  5. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.049
  6. Early experience of COVID-19 in 2 heart transplant recipients: Case reports and review of treatment options. Am J Transplant. 2020 10; 20(10):2916-2922.
    View in: PubMed
    Score: 0.048
  7. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Mar 27.
    View in: PubMed
    Score: 0.047
  8. Short-Term Efficacy and Safety of Tolvaptan in Patients with Left Ventricular Assist Devices. ASAIO J. 2020 03; 66(3):253-257.
    View in: PubMed
    Score: 0.047
  9. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.046
  10. Combined Left Ventricular Assist Device and Coronary Artery Bypass Grafting Surgery: Should We Bypass the Bypass? ASAIO J. 2020 01; 66(1):32-37.
    View in: PubMed
    Score: 0.046
  11. Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuous-flow left ventricular assist device thrombosis. Artif Organs. 2020 Apr; 44(4):367-374.
    View in: PubMed
    Score: 0.046
  12. Metabolic Dysfunction in Continuous-Flow Left Ventricular Assist Devices Patients and Outcomes. J Am Heart Assoc. 2019 11 19; 8(22):e013278.
    View in: PubMed
    Score: 0.046
  13. Discordance Between Clinical Assessment and Invasive Hemodynamics in Patients With Advanced Heart Failure. J Card Fail. 2020 Feb; 26(2):128-135.
    View in: PubMed
    Score: 0.045
  14. Association of Inflow Cannula Position with Left Ventricular Unloading and Clinical Outcomes in Patients with HeartMate II Left Ventricular Assist Device. ASAIO J. 2019 May/Jun; 65(4):331-335.
    View in: PubMed
    Score: 0.044
  15. A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange field of research: artificial heart (clinical). J Artif Organs. 2019 Sep; 22(3):181-187.
    View in: PubMed
    Score: 0.044
  16. The Effects of Hemodynamic Unloading in African Americans Implanted with Left Ventricular Assist Devices. ASAIO J. 2019 02; 65(2):e15-e17.
    View in: PubMed
    Score: 0.044
  17. Impact of Cardiac Resynchronization Therapy on Left Ventricular Unloading in Patients with Implanted Left Ventricular Assist Devices. ASAIO J. 2019 02; 65(2):117-122.
    View in: PubMed
    Score: 0.044
  18. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.044
  19. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.044
  20. Home Inotropes in Patients Supported with Left Ventricular Assist Devices. ASAIO J. 2019 01; 65(1):e7-e11.
    View in: PubMed
    Score: 0.043
  21. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.043
  22. Relationship Between Noninvasive Assessment of Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J Am Heart Assoc. 2018 11 20; 7(22):e009175.
    View in: PubMed
    Score: 0.043
  23. Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. J Card Fail. 2019 Jan; 25(1):20-26.
    View in: PubMed
    Score: 0.043
  24. Repeated Ramp Tests on Stable LVAD Patients Reveal Patient-Specific Hemodynamic Fingerprint. ASAIO J. 2018 Nov/Dec; 64(6):701-707.
    View in: PubMed
    Score: 0.043
  25. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ Heart Fail. 2018 10; 11(10):e005082.
    View in: PubMed
    Score: 0.043
  26. Impact of Residual Valve Disease on Survival After Implantation of Left Ventricular Assist Devices. Ann Thorac Surg. 2018 12; 106(6):1789-1796.
    View in: PubMed
    Score: 0.042
  27. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.042
  28. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.042
  29. Increase in short-term risk of rejection in heart transplant patients receiving granulocyte colony-stimulating factor. J Heart Lung Transplant. 2018 11; 37(11):1322-1328.
    View in: PubMed
    Score: 0.042
  30. Increased Risk of Bleeding in Left Ventricular Assist Device Patients Treated with Enoxaparin as Bridge to Therapeutic International Normalized Ratio. ASAIO J. 2018 Mar/Apr; 64(2):140-146.
    View in: PubMed
    Score: 0.041
  31. Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device. J Card Fail. 2018 Apr; 24(4):249-254.
    View in: PubMed
    Score: 0.041
  32. Predictors of Hemodynamic Improvement and Stabilization Following Intraaortic Balloon Pump Implantation in Patients With Advanced Heart Failure. J Invasive Cardiol. 2018 02; 30(2):56-61.
    View in: PubMed
    Score: 0.041
  33. Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation-An Underrecognized Problem. J Card Fail. 2018 02; 24(2):101-108.
    View in: PubMed
    Score: 0.040
  34. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.040
  35. Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. J Card Fail. 2018 03; 24(3):159-166.
    View in: PubMed
    Score: 0.040
  36. Decoupling Between Diastolic Pulmonary Artery Pressure and Pulmonary Capillary Wedge Pressure as a Prognostic Factor After Continuous Flow Ventricular Assist Device Implantation. Circ Heart Fail. 2017 Sep; 10(9).
    View in: PubMed
    Score: 0.039
  37. Cardiac Output Assessment in Patients Supported with Left Ventricular Assist Device: Discordance Between Thermodilution and Indirect Fick Cardiac Output Measurements. ASAIO J. 2017 Jul/Aug; 63(4):433-437.
    View in: PubMed
    Score: 0.039
  38. The Hemodynamic Effects of Aortic Insufficiency in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. J Card Fail. 2017 Jul; 23(7):545-551.
    View in: PubMed
    Score: 0.038
  39. 3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC Cardiovasc Imaging. 2018 02; 11(2 Pt 1):159-169.
    View in: PubMed
    Score: 0.038
  40. Surgically Corrected Mitral Regurgitation During Left Ventricular Assist Device Implantation Is Associated With Low Recurrence Rate and Improved Midterm Survival. Ann Thorac Surg. 2017 Mar; 103(3):725-733.
    View in: PubMed
    Score: 0.037
  41. Left Ventricular Assist Device Deactivation via Percutaneous Closure of the Outflow Graft. J Card Fail. 2016 Aug; 22(8):653-5.
    View in: PubMed
    Score: 0.036
  42. Screening for Outflow Cannula Malfunction of Left Ventricular Assist Devices (LVADs) With the Use of Doppler Echocardiography: New LVAD-Specific Reference Values for Contemporary Devices. J Card Fail. 2016 Oct; 22(10):808-14.
    View in: PubMed
    Score: 0.036
  43. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J Heart Lung Transplant. 2016 08; 35(8):976-85.
    View in: PubMed
    Score: 0.036
  44. Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices. JACC Heart Fail. 2016 Mar; 4(3):208-17.
    View in: PubMed
    Score: 0.035
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.