The University of Chicago Header Logo

Connection

Robert Shenkar to Endothelial Cells

This is a "connection" page, showing publications Robert Shenkar has written about Endothelial Cells.
Connection Strength

0.739
  1. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice. Stroke. 2023 11; 54(11):2906-2917.
    View in: PubMed
    Score: 0.178
  2. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016 Apr 07; 532(7597):122-6.
    View in: PubMed
    Score: 0.106
  3. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery. 2009 Jul; 65(1):138-44; discussion 144-5.
    View in: PubMed
    Score: 0.067
  4. Variations in structural protein expression and endothelial cell proliferation in relation to clinical manifestations of cerebral cavernous malformations. Neurosurgery. 2005 Feb; 56(2):343-54.
    View in: PubMed
    Score: 0.049
  5. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal. 2024 01 09; 22(1):23.
    View in: PubMed
    Score: 0.046
  6. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021 07 01; 131(13).
    View in: PubMed
    Score: 0.038
  7. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021 06; 594(7862):271-276.
    View in: PubMed
    Score: 0.038
  8. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. J Autoimmun. 2020 09; 113:102469.
    View in: PubMed
    Score: 0.035
  9. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019 11 27; 11(520).
    View in: PubMed
    Score: 0.034
  10. Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest. 2019 03; 99(3):319-330.
    View in: PubMed
    Score: 0.031
  11. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. 2017 Nov 06; 214(11):3331-3346.
    View in: PubMed
    Score: 0.029
  12. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017 05 18; 545(7654):305-310.
    View in: PubMed
    Score: 0.029
  13. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet. 2014 Aug 15; 23(16):4357-70.
    View in: PubMed
    Score: 0.023
  14. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet. 2011 Jan 15; 20(2):211-22.
    View in: PubMed
    Score: 0.018
  15. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med. 2010 Apr 12; 207(4):881-96.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.