The University of Chicago Header Logo

Connection

Nitasha Sarswat to Hemodynamics

This is a "connection" page, showing publications Nitasha Sarswat has written about Hemodynamics.
Connection Strength

1.679
  1. Discordance between lactic acidemia and hemodynamics in patients with advanced heart failure. Clin Cardiol. 2021 May; 44(5):636-645.
    View in: PubMed
    Score: 0.152
  2. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.147
  3. Discordance Between Clinical Assessment and Invasive Hemodynamics in Patients With Advanced Heart Failure. J Card Fail. 2020 Feb; 26(2):128-135.
    View in: PubMed
    Score: 0.137
  4. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.132
  5. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.131
  6. Relationship Between Noninvasive Assessment of Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J Am Heart Assoc. 2018 11 20; 7(22):e009175.
    View in: PubMed
    Score: 0.130
  7. Repeated Ramp Tests on Stable LVAD Patients Reveal Patient-Specific Hemodynamic Fingerprint. ASAIO J. 2018 Nov/Dec; 64(6):701-707.
    View in: PubMed
    Score: 0.129
  8. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.127
  9. Predictors of Hemodynamic Improvement and Stabilization Following Intraaortic Balloon Pump Implantation in Patients With Advanced Heart Failure. J Invasive Cardiol. 2018 02; 30(2):56-61.
    View in: PubMed
    Score: 0.122
  10. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.122
  11. The Hemodynamic Effects of Aortic Insufficiency in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. J Card Fail. 2017 Jul; 23(7):545-551.
    View in: PubMed
    Score: 0.116
  12. The prognostic role of advanced hemodynamic variables in patients with left ventricular assist devices. Artif Organs. 2023 Mar; 47(3):574-581.
    View in: PubMed
    Score: 0.043
  13. Aortic Pulsatility Index: A Novel Hemodynamic Variable for Evaluation of Decompensated Heart Failure. J Card Fail. 2021 10; 27(10):1045-1052.
    View in: PubMed
    Score: 0.039
  14. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.035
  15. The Effects of Hemodynamic Unloading in African Americans Implanted with Left Ventricular Assist Devices. ASAIO J. 2019 02; 65(2):e15-e17.
    View in: PubMed
    Score: 0.033
  16. Cardiac Output Assessment in Patients Supported with Left Ventricular Assist Device: Discordance Between Thermodilution and Indirect Fick Cardiac Output Measurements. ASAIO J. 2017 Jul/Aug; 63(4):433-437.
    View in: PubMed
    Score: 0.029
  17. 3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC Cardiovasc Imaging. 2018 02; 11(2 Pt 1):159-169.
    View in: PubMed
    Score: 0.029
  18. Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices. JACC Heart Fail. 2016 Mar; 4(3):208-17.
    View in: PubMed
    Score: 0.027
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.