The University of Chicago Header Logo

Connection

Takeyoshi Ota to Heart Failure

This is a "connection" page, showing publications Takeyoshi Ota has written about Heart Failure.
Connection Strength

6.838
  1. Surgical Correction of Spontaneous Outflow Graft Twisting of HeartMate 3 LVAD via a Subcostal Approach. Heart Surg Forum. 2022 Feb 28; 25(1):E152-E154.
    View in: PubMed
    Score: 0.424
  2. Implications of Heart Rate in Patients with Left Ventricular Assist Devices. Int Heart J. 2022; 63(1):56-61.
    View in: PubMed
    Score: 0.419
  3. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.382
  4. Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuous-flow left ventricular assist device thrombosis. Artif Organs. 2020 Apr; 44(4):367-374.
    View in: PubMed
    Score: 0.364
  5. Novel Formula to Calculate Three-Dimensional Angle Between Inflow Cannula and Device Body of HeartMate II LVAD. Ann Thorac Surg. 2020 01; 109(1):63-68.
    View in: PubMed
    Score: 0.352
  6. A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange field of research: artificial heart (clinical). J Artif Organs. 2019 Sep; 22(3):181-187.
    View in: PubMed
    Score: 0.347
  7. Impact of Residual Valve Disease on Survival After Implantation of Left Ventricular Assist Devices. Ann Thorac Surg. 2018 12; 106(6):1789-1796.
    View in: PubMed
    Score: 0.332
  8. Preoperative Right-Sided Cardiac Congestion Is Associated with Gastrointestinal Bleeding in Patients with Continuous-Flow Left Ventricular Assist Devices. Dig Dis Sci. 2018 Jun; 63(6):1518-1524.
    View in: PubMed
    Score: 0.320
  9. Left ventricular assist device explant versus decommission for myocardial recovery. J Thorac Cardiovasc Surg. 2017 07; 154(1):171-172.
    View in: PubMed
    Score: 0.302
  10. Surgically Corrected Mitral Regurgitation During Left Ventricular Assist Device Implantation Is Associated With Low Recurrence Rate and Improved Midterm Survival. Ann Thorac Surg. 2017 Mar; 103(3):725-733.
    View in: PubMed
    Score: 0.291
  11. Continuous-flow left ventricular assist device exchange: clinical outcomes. J Heart Lung Transplant. 2014 Jan; 33(1):65-70.
    View in: PubMed
    Score: 0.234
  12. Reinforcement of HeartMate II bend relief connection: champagne bottle technique. Ann Thorac Surg. 2013 Apr; 95(4):e107-8.
    View in: PubMed
    Score: 0.229
  13. Ten-year, single center experience of ambulatory axillary intra-aortic balloon pump support for heart failure. J Cardiol. 2022 05; 79(5):611-617.
    View in: PubMed
    Score: 0.104
  14. Impact of worsening of aortic insufficiency during HeartMate 3 LVAD support. Artif Organs. 2021 Mar; 45(3):297-302.
    View in: PubMed
    Score: 0.097
  15. Neurohormonal Blockade During Left Ventricular Assist Device Support. ASAIO J. 2020 08; 66(8):881-885.
    View in: PubMed
    Score: 0.095
  16. Optimal cannula positioning of HeartMate 3 left ventricular assist device. Artif Organs. 2020 Dec; 44(12):e509-e519.
    View in: PubMed
    Score: 0.095
  17. Aortic Insufficiency During HeartMate 3 Left Ventricular Assist Device Support. J Card Fail. 2020 Oct; 26(10):863-869.
    View in: PubMed
    Score: 0.094
  18. Clinical Outcomes and Quality of Life With an Ambulatory Counterpulsation Pump in Advanced Heart Failure Patients: Results of the Multicenter Feasibility Trial. Circ Heart Fail. 2020 04; 13(4):e006666.
    View in: PubMed
    Score: 0.093
  19. Decoupling Between Diastolic Pulmonary Artery and Pulmonary Capillary Wedge Pressures Is Associated With Right Ventricular Dysfunction and Hemocompatibility-Related Adverse Events in Patients With Left Ventricular Assist Devices. J Am Heart Assoc. 2020 04 07; 9(7):e014801.
    View in: PubMed
    Score: 0.093
  20. Effect of Concomitant Tricuspid Valve Surgery With Left Ventricular Assist Device Implantation. Ann Thorac Surg. 2020 09; 110(3):918-924.
    View in: PubMed
    Score: 0.092
  21. HeartWare Ventricular Assist Device Cannula Position and Hemocompatibility-Related Adverse Events. Ann Thorac Surg. 2020 09; 110(3):911-917.
    View in: PubMed
    Score: 0.092
  22. Deep Y-Descent in Right Atrial Waveforms Following Left Ventricular Assist Device Implantation. J Card Fail. 2020 Apr; 26(4):360-367.
    View in: PubMed
    Score: 0.091
  23. Combined Left Ventricular Assist Device and Coronary Artery Bypass Grafting Surgery: Should We Bypass the Bypass? ASAIO J. 2020 01; 66(1):32-37.
    View in: PubMed
    Score: 0.091
  24. Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. J Card Surg. 2019 Dec; 34(12):1511-1518.
    View in: PubMed
    Score: 0.090
  25. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J Card Fail. 2019 Oct; 25(10):787-794.
    View in: PubMed
    Score: 0.089
  26. Association of Inflow Cannula Position with Left Ventricular Unloading and Clinical Outcomes in Patients with HeartMate II Left Ventricular Assist Device. ASAIO J. 2019 May/Jun; 65(4):331-335.
    View in: PubMed
    Score: 0.087
  27. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.086
  28. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.085
  29. Feasibility and utility of intraoperative epicardial scar characterization during left ventricular assist device implantation. J Cardiovasc Electrophysiol. 2019 02; 30(2):183-192.
    View in: PubMed
    Score: 0.085
  30. Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. J Card Fail. 2019 Jan; 25(1):20-26.
    View in: PubMed
    Score: 0.084
  31. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ Heart Fail. 2018 10; 11(10):e005082.
    View in: PubMed
    Score: 0.084
  32. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.083
  33. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.083
  34. Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device. J Card Fail. 2018 Apr; 24(4):249-254.
    View in: PubMed
    Score: 0.080
  35. Predictors of Hemodynamic Improvement and Stabilization Following Intraaortic Balloon Pump Implantation in Patients With Advanced Heart Failure. J Invasive Cardiol. 2018 02; 30(2):56-61.
    View in: PubMed
    Score: 0.080
  36. Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation-An Underrecognized Problem. J Card Fail. 2018 02; 24(2):101-108.
    View in: PubMed
    Score: 0.080
  37. The first-in-human experience with a minimally invasive, ambulatory, counterpulsation heart assist system for advanced congestive heart failure. J Heart Lung Transplant. 2018 01; 37(1):1-6.
    View in: PubMed
    Score: 0.079
  38. Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. J Card Fail. 2018 03; 24(3):159-166.
    View in: PubMed
    Score: 0.078
  39. Screening for Outflow Cannula Malfunction of Left Ventricular Assist Devices (LVADs) With the Use of Doppler Echocardiography: New LVAD-Specific Reference Values for Contemporary Devices. J Card Fail. 2016 Oct; 22(10):808-14.
    View in: PubMed
    Score: 0.071
  40. PCI in Patients Supported With CF-LVADs: Indications, Safety, and Outcomes. J Invasive Cardiol. 2016 Jun; 28(6):238-42.
    View in: PubMed
    Score: 0.071
  41. Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices. JACC Heart Fail. 2016 Mar; 4(3):208-17.
    View in: PubMed
    Score: 0.069
  42. The Subclavian Intraaortic Balloon Pump: A Compelling Bridge Device for Advanced Heart Failure. Ann Thorac Surg. 2015 Dec; 100(6):2151-7; discussion 2157-8.
    View in: PubMed
    Score: 0.067
  43. Device exchange in HeartMate II recipients: long-term outcomes and risk of thrombosis recurrence. ASAIO J. 2015 Mar-Apr; 61(2):144-9.
    View in: PubMed
    Score: 0.065
  44. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail. 2014 Sep; 7(5):799-806.
    View in: PubMed
    Score: 0.063
  45. Hemodynamic Effects of Concomitant Mitral Valve Surgery and Left Ventricular Assist Device Implantation. ASAIO J. 2020 04; 66(4):355-361.
    View in: PubMed
    Score: 0.023
  46. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.023
  47. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.021
  48. Repeated Ramp Tests on Stable LVAD Patients Reveal Patient-Specific Hemodynamic Fingerprint. ASAIO J. 2018 Nov/Dec; 64(6):701-707.
    View in: PubMed
    Score: 0.021
  49. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.020
  50. Invasive Hemodynamic Echocardiographic Ramp Test in the HeartAssist5 LVAD: Insights into Device Performance. ASAIO J. 2017 Mar/Apr; 63(2):e10-e12.
    View in: PubMed
    Score: 0.019
  51. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J Heart Lung Transplant. 2016 08; 35(8):976-85.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.