The University of Chicago Header Logo

Connection

Takeyoshi Ota to Heart Ventricles

This is a "connection" page, showing publications Takeyoshi Ota has written about Heart Ventricles.
Connection Strength

1.674
  1. The extracellular matrix patch implanted in the right ventricle evaluated with cardiovascular magnetic resonance protocol to assess regional physio-mechanical properties. Interact Cardiovasc Thorac Surg. 2017 01; 24(1):82-89.
    View in: PubMed
    Score: 0.395
  2. In situ constructive myocardial remodeling of extracellular matrix patch enhanced with controlled growth factor release. J Thorac Cardiovasc Surg. 2015 Nov; 150(5):1280-90.e2.
    View in: PubMed
    Score: 0.366
  3. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.117
  4. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.113
  5. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.112
  6. Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. J Card Fail. 2018 03; 24(3):159-166.
    View in: PubMed
    Score: 0.106
  7. A novel profile/view ordering with a non-convex star shutter for high-resolution 3D volumetric T1 mapping under multiple breath-holds. Magn Reson Med. 2017 06; 77(6):2215-2224.
    View in: PubMed
    Score: 0.098
  8. Successful conservative management of blunt right ventricular rupture in a patient with prior cardiac surgery. Interact Cardiovasc Thorac Surg. 2011 Dec; 13(6):686-7.
    View in: PubMed
    Score: 0.070
  9. Dynamic and site-specific impact of ventricular pacing on left ventricular ejection fraction. Heart Rhythm. 2010 Jun; 7(6):813-9.
    View in: PubMed
    Score: 0.063
  10. Subxiphoid epicardial left ventricular pacing lead placement is feasible. J Thorac Cardiovasc Surg. 2010 Jun; 139(6):1661-2.
    View in: PubMed
    Score: 0.061
  11. Optimal cannula positioning of HeartMate 3 left ventricular assist device. Artif Organs. 2020 Dec; 44(12):e509-e519.
    View in: PubMed
    Score: 0.032
  12. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.031
  13. Association of Inflow Cannula Position with Left Ventricular Unloading and Clinical Outcomes in Patients with HeartMate II Left Ventricular Assist Device. ASAIO J. 2019 May/Jun; 65(4):331-335.
    View in: PubMed
    Score: 0.030
  14. Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography. 2018 10; 35(10):1606-1615.
    View in: PubMed
    Score: 0.028
  15. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.027
  16. 3D late gadolinium enhanced cardiovascular MR with CENTRA-PLUS profile/view ordering: Feasibility of right ventricular myocardial damage assessment using a swine animal model. Magn Reson Imaging. 2017 06; 39:7-14.
    View in: PubMed
    Score: 0.025
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.