The University of Chicago Header Logo

An Accessible Optical Toolbox for Saturated Nanoscale Analysis of Neural Architecture


Collapse Overview 
Collapse abstract
Nanoscale-resolution reconstructions of the complete architectures of neurons offer the potential to revolutionize the study of neuronal circuitry in normal and diseased brains but this promise is far from realized because the larger neuroscience community cannot access the technologies that provide nanoscale reconstructions over large volumes and the computational infrastructure required to analyze them. As a result, neuroanatomy at the nanoscale is restricted to one-off studies of smaller volumes, rarely extending past small volume reconstructions in single animals (n<=1), and accessible only to labs that can afford the extraordinary time commitment, labor, and expense required to reconstruct even simple neuronal circuits. Here we propose a novel approach: rather than developing more and more sophisticated hardware for nanoscale reconstructions of the brain, we propose to develop a toolbox of accessible molecular, chemical, and computational approaches for accurate nanoscale reconstructions of large volumes of the brain targeting fluorescence microscopy and the conventional confocal microscope ? two of the most widely accessed tools in the neuroscience arsenal. By providing an accessible pipeline to reconstructing the natural shape and space between brain cells found in the living brain over wide range of experimental conditions, we will help deliver access to comprehensive nanoscale neuroanatomy to the broader neuroscience community.
Collapse sponsor award id
R01MH110932

Collapse Biography 

Collapse Time 
Collapse start date
2016-07-01
Collapse end date
2021-04-30