The University of Chicago Header Logo

Wiring the UV Signaling Circuitry


Collapse Overview 
Collapse abstract
Our long-term goal is to understand the molecular mechanisms that govern the cellular stress response, thereby exploring the potential of targeting the cellular stress signaling circuitry for prevention and treatment of human diseases. In this proposal, we will study the integration of the stress signaling network; i.e. wiring the stress signaling circuitry, using the regulation of UV signaling by the crosstalk between NF-kappaB and JNK1 as a model system. Using both genetic and biochemical approaches, we recently found that the transcription factor NF-kappaB, which is known as a key survival factor in cells, surprisingly functions as a pro-death factor in UV-induced apoptosis by promoting activation of c-Jun N-terminal protein kinase 1 (JNK1). Specifically, RelA/p65, which is a major transactivating subunit of the NF-kappaB family, in its pre-existing nuclear form controls expression of protein kinase c delta (PKCdelta) in non-stimulated cells. This priming effect allows UV to quickly activate PKCdelta, which is required for rapid and robust activation of JNK1 and cell death. We hypothesize that the novel crosstalk between NF-kappaB and JNK1 is critical in wiring the UV signaling circuitry in programmed cell death and tumorigenesis. This proposal is novel, as it will determine the molecular mechanism by which the NF-kappaB-PKCdelta axis regulates UV-induced JNK1 activation and cell death, to elucidate the molecular mechanism by which PKCdelta participates in the integration of the UV signaling circuitry, and to determine the pathophysiological relevance of the novel crosstalk between NF-kappaB and JNK1 in response to physical stress in vivo. This study will put forward a novel paradigm regarding the molecular mechanism by which the UV signaling circuitry is integrated and will also provide the rationale in developing novel strategies for prevention and treatment of physical stress-related human diseases and cancer. PUBLIC HEALTH RELEVANCE: Ultraviolet (UV) is a major physical stress and is also a complete carcinogen in skin cancer. This research is designed to determine how the information of UV-irradiation is wired by the crosstalk between two major cell signaling regulators, NF-:B and JNK1 in physiological and/or pathological events such as programmed cell death apoptosis and tumorigenesis. This study will test a novel paradigm regarding the molecular mechanism by which the UV signaling circuitry is integrated and will also provide the rationale in developing novel strategies for prevention and treatment of physical stress-related human diseases and cancer.
Collapse sponsor award id
R01ES015868

Collapse Biography 

Collapse Time 
Collapse start date
2008-02-08
Collapse end date
2014-01-31