The University of Chicago Header Logo

Connection

Stephen Archer to Muscle, Smooth, Vascular

This is a "connection" page, showing publications Stephen Archer has written about Muscle, Smooth, Vascular.
Connection Strength

5.831
  1. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. Am J Respir Crit Care Med. 2017 Feb 15; 195(4):515-529.
    View in: PubMed
    Score: 0.542
  2. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Arch. 2016 Jan; 468(1):43-58.
    View in: PubMed
    Score: 0.492
  3. Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res. 2013 Mar 01; 112(5):802-15.
    View in: PubMed
    Score: 0.408
  4. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012 May 25; 110(11):1484-97.
    View in: PubMed
    Score: 0.387
  5. Paracrine proliferative signaling by senescent cells in world health organization group 3 pulmonary hypertension: age corrupting youth? Circ Res. 2011 Aug 19; 109(5):476-9.
    View in: PubMed
    Score: 0.370
  6. Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD+-dependent mechanism: recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling. Circ Res. 2005 Jul 08; 97(1):4-7.
    View in: PubMed
    Score: 0.242
  7. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res. 2004 Aug 06; 95(3):308-18.
    View in: PubMed
    Score: 0.225
  8. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003 Feb 11; 107(5):769-76.
    View in: PubMed
    Score: 0.205
  9. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res. 2002 Jun 28; 90(12):1307-15.
    View in: PubMed
    Score: 0.196
  10. Dexfenfluramine elevates systemic blood pressure by inhibiting potassium currents in vascular smooth muscle cells. J Pharmacol Exp Ther. 1999 Dec; 291(3):1143-9.
    View in: PubMed
    Score: 0.164
  11. A role for potassium channels in smooth muscle cells and platelets in the etiology of primary pulmonary hypertension. Chest. 1998 Sep; 114(3 Suppl):200S-204S.
    View in: PubMed
    Score: 0.151
  12. Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels: Thomas A. Neff lecture. Chest. 1998 Jul; 114(1 Suppl):17S-22S.
    View in: PubMed
    Score: 0.149
  13. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998 Jun 01; 101(11):2319-30.
    View in: PubMed
    Score: 0.148
  14. Potassium channel diversity in vascular smooth muscle cells. Can J Physiol Pharmacol. 1997 Jul; 75(7):889-97.
    View in: PubMed
    Score: 0.139
  15. Diversity of response in vascular smooth muscle cells to changes in oxygen tension. Kidney Int. 1997 Feb; 51(2):462-6.
    View in: PubMed
    Score: 0.135
  16. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation. 1996 Nov 01; 94(9):2216-20.
    View in: PubMed
    Score: 0.133
  17. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci U S A. 1996 Jul 23; 93(15):8089-94.
    View in: PubMed
    Score: 0.130
  18. Diversity of phenotype and function of vascular smooth muscle cells. J Lab Clin Med. 1996 Jun; 127(6):524-9.
    View in: PubMed
    Score: 0.129
  19. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res. 1996 Mar; 78(3):431-42.
    View in: PubMed
    Score: 0.127
  20. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp Physiol. 1995 Sep; 80(5):825-34.
    View in: PubMed
    Score: 0.122
  21. Activation of the cGMP-dependent protein kinase mimics the stimulatory effect of nitric oxide and cGMP on calcium-gated potassium channels. Physiol Res. 1995; 44(1):39-44.
    View in: PubMed
    Score: 0.117
  22. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol. 2013 Dec 24; 62(25 Suppl):D4-12.
    View in: PubMed
    Score: 0.109
  23. NG-monomethyl-L-arginine causes nitric oxide synthesis in isolated arterial rings: trouble in paradise. Biochem Biophys Res Commun. 1992 Oct 30; 188(2):590-6.
    View in: PubMed
    Score: 0.101
  24. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011 Apr 15; 183(8):1080-91.
    View in: PubMed
    Score: 0.088
  25. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem Biophys Res Commun. 1989 Nov 15; 164(3):1198-205.
    View in: PubMed
    Score: 0.082
  26. Redox status in the control of pulmonary vascular tone. Herz. 1986 Jun; 11(3):127-41.
    View in: PubMed
    Score: 0.064
  27. Pergolide is an inhibitor of voltage-gated potassium channels, including Kv1.5, and causes pulmonary vasoconstriction. Circulation. 2005 Sep 06; 112(10):1494-9.
    View in: PubMed
    Score: 0.061
  28. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest. 2005 Jun; 115(6):1479-91.
    View in: PubMed
    Score: 0.060
  29. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation. 2003 Oct 28; 108(17):2066-9.
    View in: PubMed
    Score: 0.054
  30. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res. 2002 Sep 20; 91(6):478-86.
    View in: PubMed
    Score: 0.050
  31. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation. 2002 Jan 15; 105(2):244-50.
    View in: PubMed
    Score: 0.048
  32. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001 Aug; 15(10):1801-3.
    View in: PubMed
    Score: 0.046
  33. Potassium channels regulate tone in rat pulmonary veins. Am J Physiol Lung Cell Mol Physiol. 2001 Jun; 280(6):L1138-47.
    View in: PubMed
    Score: 0.046
  34. Voltage-gated potassium channels in human ductus arteriosus. Lancet. 2000 Jul 08; 356(9224):134-7.
    View in: PubMed
    Score: 0.043
  35. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol. 2000; 475:219-40.
    View in: PubMed
    Score: 0.041
  36. Dexfenfluramine increases pulmonary artery smooth muscle intracellular Ca2+, independent of membrane potential. Am J Physiol. 1999 09; 277(3):L662-6.
    View in: PubMed
    Score: 0.040
  37. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res. 2019 06 07; 124(12):1727-1746.
    View in: PubMed
    Score: 0.039
  38. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995 Feb; 9(2):183-9.
    View in: PubMed
    Score: 0.029
  39. Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary artery smooth muscle cells. J Appl Physiol (1985). 1994 Jun; 76(6):2611-5.
    View in: PubMed
    Score: 0.028
  40. A redox-based O2 sensor in rat pulmonary vasculature. Circ Res. 1993 Dec; 73(6):1100-12.
    View in: PubMed
    Score: 0.027
  41. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006 Jun 06; 113(22):2630-41.
    View in: PubMed
    Score: 0.016
  42. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16; 43(12 Suppl S):13S-24S.
    View in: PubMed
    Score: 0.014
  43. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation. 2003 Apr 22; 107(15):2037-44.
    View in: PubMed
    Score: 0.013
  44. Effects of fluoxetine, phentermine, and venlafaxine on pulmonary arterial pressure and electrophysiology. Am J Physiol. 1999 02; 276(2):L213-9.
    View in: PubMed
    Score: 0.010
  45. A maturational shift in pulmonary K+ channels, from Ca2+ sensitive to voltage dependent. Am J Physiol. 1998 12; 275(6):L1019-25.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.