The University of Chicago Header Logo

Connection

Stephen Archer to Vasoconstriction

This is a "connection" page, showing publications Stephen Archer has written about Vasoconstriction.
Connection Strength

5.762
  1. Response by Dunham-Snary and Archer to Letter Regarding Article, "Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction". Circ Res. 2019 09 27; 125(8):e35-e36.
    View in: PubMed
    Score: 0.696
  2. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest. 2017 Jan; 151(1):181-192.
    View in: PubMed
    Score: 0.565
  3. Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res. 2013 Mar 01; 112(5):802-15.
    View in: PubMed
    Score: 0.438
  4. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation. 2006 Dec; 13(8):615-32.
    View in: PubMed
    Score: 0.286
  5. Counterpoint: Hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol (1985). 2006 Sep; 101(3):995-8; discussion 998.
    View in: PubMed
    Score: 0.281
  6. Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985). 2005 Jan; 98(1):390-403.
    View in: PubMed
    Score: 0.251
  7. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res. 2004 Aug 06; 95(3):308-18.
    View in: PubMed
    Score: 0.242
  8. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies. News Physiol Sci. 2002 Aug; 17:131-7.
    View in: PubMed
    Score: 0.212
  9. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001 Aug; 15(10):1801-3.
    View in: PubMed
    Score: 0.198
  10. Differentiating COVID-19 Pneumonia From Acute Respiratory Distress Syndrome and High Altitude Pulmonary Edema: Therapeutic Implications. Circulation. 2020 07 14; 142(2):101-104.
    View in: PubMed
    Score: 0.182
  11. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res. 2019 06 07; 124(12):1727-1746.
    View in: PubMed
    Score: 0.168
  12. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998 Jun 01; 101(11):2319-30.
    View in: PubMed
    Score: 0.159
  13. Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2016 08 15; 194(4):464-75.
    View in: PubMed
    Score: 0.140
  14. Dithionite increases radical formation and decreases vasoconstriction in the lung. Evidence that dithionite does not mimic alveolar hypoxia. Circ Res. 1995 Jul; 77(1):174-81.
    View in: PubMed
    Score: 0.130
  15. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995 Feb; 9(2):183-9.
    View in: PubMed
    Score: 0.126
  16. Activation of the EGFR/p38/JNK pathway by mitochondrial-derived hydrogen peroxide contributes to oxygen-induced contraction of ductus arteriosus. J Mol Med (Berl). 2014 Sep; 92(9):995-1007.
    View in: PubMed
    Score: 0.121
  17. The role of redox changes in oxygen sensing. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):182-91.
    View in: PubMed
    Score: 0.093
  18. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem Biophys Res Commun. 1989 Nov 15; 164(3):1198-205.
    View in: PubMed
    Score: 0.088
  19. Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol (1985). 1989 Nov; 67(5):1903-11.
    View in: PubMed
    Score: 0.088
  20. Hypoxic pulmonary vasoconstriction is unaltered by creatine depletion induced by dietary beta-guanidino propionic acid. Life Sci. 1989; 45(12):1081-8.
    View in: PubMed
    Score: 0.083
  21. Blunted hypoxic pulmonary vasoconstriction in experimental neonatal chronic lung disease. Am J Respir Crit Care Med. 2008 Aug 15; 178(4):399-406.
    View in: PubMed
    Score: 0.079
  22. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacol Ther. 2007 Jul; 115(1):56-69.
    View in: PubMed
    Score: 0.074
  23. The effects of substance P on the preconstricted pulmonary vasculature of the anesthetized dog. Proc Soc Exp Biol Med. 1986 Oct; 183(1):19-27.
    View in: PubMed
    Score: 0.071
  24. Redox status in the control of pulmonary vascular tone. Herz. 1986 Jun; 11(3):127-41.
    View in: PubMed
    Score: 0.069
  25. Pergolide is an inhibitor of voltage-gated potassium channels, including Kv1.5, and causes pulmonary vasoconstriction. Circulation. 2005 Sep 06; 112(10):1494-9.
    View in: PubMed
    Score: 0.066
  26. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 2004 Dec; 37(6):1119-36.
    View in: PubMed
    Score: 0.062
  27. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res. 2002 Sep 20; 91(6):478-86.
    View in: PubMed
    Score: 0.054
  28. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol. 2002 Dec; 283(6):H2440-9.
    View in: PubMed
    Score: 0.053
  29. Sildenafil reverses O2 constriction of the rabbit ductus arteriosus by inhibiting type 5 phosphodiesterase and activating BK(Ca) channels. Pediatr Res. 2002 Jul; 52(1):19-24.
    View in: PubMed
    Score: 0.053
  30. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res. 2002 Jun 28; 90(12):1307-15.
    View in: PubMed
    Score: 0.053
  31. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics. 2021 09; 113(5):3128-3140.
    View in: PubMed
    Score: 0.049
  32. Potassium channels regulate tone in rat pulmonary veins. Am J Physiol Lung Cell Mol Physiol. 2001 Jun; 280(6):L1138-47.
    View in: PubMed
    Score: 0.049
  33. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol. 2000; 475:219-40.
    View in: PubMed
    Score: 0.044
  34. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci U S A. 1999 Jul 06; 96(14):7944-9.
    View in: PubMed
    Score: 0.043
  35. Diversity of response in vascular smooth muscle cells to changes in oxygen tension. Kidney Int. 1997 Feb; 51(2):462-6.
    View in: PubMed
    Score: 0.036
  36. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation. 1996 Nov 01; 94(9):2216-20.
    View in: PubMed
    Score: 0.036
  37. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res. 1996 Mar; 78(3):431-42.
    View in: PubMed
    Score: 0.034
  38. Nebulized nitric oxide/nucleophile adduct reduces chronic pulmonary hypertension. Cardiovasc Res. 1996 Jan; 31(1):55-62.
    View in: PubMed
    Score: 0.034
  39. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing. Physiol Res. 1995; 44(6):361-7.
    View in: PubMed
    Score: 0.031
  40. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol (1985). 1994 Feb; 76(2):933-40.
    View in: PubMed
    Score: 0.029
  41. NG-monomethyl-L-arginine causes nitric oxide synthesis in isolated arterial rings: trouble in paradise. Biochem Biophys Res Commun. 1992 Oct 30; 188(2):590-6.
    View in: PubMed
    Score: 0.027
  42. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992 Apr; 262(4 Pt 1):C882-90.
    View in: PubMed
    Score: 0.026
  43. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30; 54(1 Suppl):S20-S31.
    View in: PubMed
    Score: 0.021
  44. Developmental absence of the O2 sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs O2 constriction contributing to patent ductus arteriosus. Pediatr Res. 2008 Feb; 63(2):176-81.
    View in: PubMed
    Score: 0.019
  45. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation. 2007 Apr 03; 115(13):1777-88.
    View in: PubMed
    Score: 0.018
  46. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006 Jun 06; 113(22):2630-41.
    View in: PubMed
    Score: 0.017
  47. Acute oxygen-sensing mechanisms. N Engl J Med. 2005 Nov 10; 353(19):2042-55.
    View in: PubMed
    Score: 0.017
  48. Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation. 2004 Sep 14; 110(11):1372-9.
    View in: PubMed
    Score: 0.015
  49. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16; 43(12 Suppl S):13S-24S.
    View in: PubMed
    Score: 0.015
  50. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation. 2003 Apr 22; 107(15):2037-44.
    View in: PubMed
    Score: 0.014
  51. Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary artery smooth muscle cells. J Appl Physiol (1985). 1994 Jun; 76(6):2611-5.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.