The University of Chicago Header Logo

Connection

Tobin R. Sosnick to Amino Acid Sequence

This is a "connection" page, showing publications Tobin R. Sosnick has written about Amino Acid Sequence.
Connection Strength

1.217
  1. Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar. Proc Natl Acad Sci U S A. 2015 Jul 07; 112(27):8302-7.
    View in: PubMed
    Score: 0.100
  2. Investigating models of protein function and allostery with a widespread mutational analysis of a light-activated protein. Biophys J. 2013 Aug 20; 105(4):1027-36.
    View in: PubMed
    Score: 0.088
  3. Simplified protein models: predicting folding pathways and structure using amino acid sequences. Phys Rev Lett. 2013 Jul 12; 111(2):028103.
    View in: PubMed
    Score: 0.087
  4. The folding transition state of protein L is extensive with nonnative interactions (and not small and polarized). J Mol Biol. 2012 Jul 13; 420(3):220-34.
    View in: PubMed
    Score: 0.080
  5. Modeling large regions in proteins: applications to loops, termini, and folding. Protein Sci. 2012 Jan; 21(1):107-21.
    View in: PubMed
    Score: 0.078
  6. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy. J Am Chem Soc. 2010 Nov 24; 132(46):16352-3.
    View in: PubMed
    Score: 0.072
  7. Protein structure prediction enhanced with evolutionary diversity: SPEED. Protein Sci. 2010 Mar; 19(3):520-34.
    View in: PubMed
    Score: 0.069
  8. Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol. 2008 Sep 19; 381(5):1362-81.
    View in: PubMed
    Score: 0.062
  9. Barrier-limited, microsecond folding of a stable protein measured with hydrogen exchange: Implications for downhill folding. Proc Natl Acad Sci U S A. 2004 Nov 02; 101(44):15639-44.
    View in: PubMed
    Score: 0.048
  10. Fast folding of a helical protein initiated by the collision of unstructured chains. Proc Natl Acad Sci U S A. 2004 Sep 14; 101(37):13478-82.
    View in: PubMed
    Score: 0.047
  11. Discerning the structure and energy of multiple transition states in protein folding using psi-analysis. J Mol Biol. 2004 Mar 19; 337(2):463-75.
    View in: PubMed
    Score: 0.046
  12. D/H amide isotope effect in model alpha-helical peptides. J Am Chem Soc. 2002 Nov 27; 124(47):13994-5.
    View in: PubMed
    Score: 0.042
  13. Distinguishing foldable proteins from nonfolders: when and how do they differ? Proteins. 2002 Oct 01; 49(1):15-23.
    View in: PubMed
    Score: 0.041
  14. Contribution of hydrogen bonding to protein stability estimated from isotope effects. Biochemistry. 2002 Feb 19; 41(7):2120-9.
    View in: PubMed
    Score: 0.040
  15. Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nat Struct Biol. 2001 Dec; 8(12):1042-7.
    View in: PubMed
    Score: 0.039
  16. Properties of protein unfolded states suggest broad selection for expanded conformational ensembles. Proc Natl Acad Sci U S A. 2020 09 22; 117(38):23356-23364.
    View in: PubMed
    Score: 0.036
  17. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A. 1999 Sep 14; 96(19):10699-704.
    View in: PubMed
    Score: 0.033
  18. Viscosity dependence of the folding kinetics of a dimeric and monomeric coiled coil. Biochemistry. 1999 Feb 23; 38(8):2601-9.
    View in: PubMed
    Score: 0.032
  19. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry. 1998 Oct 13; 37(41):14613-22.
    View in: PubMed
    Score: 0.031
  20. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell. 2017 03 09; 168(6):1028-1040.e19.
    View in: PubMed
    Score: 0.028
  21. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core. Proc Natl Acad Sci U S A. 2017 02 28; 114(9):2241-2246.
    View in: PubMed
    Score: 0.028
  22. The role of helix formation in the folding of a fully alpha-helical coiled coil. Proteins. 1996 Apr; 24(4):427-32.
    View in: PubMed
    Score: 0.026
  23. Automated real-space refinement of protein structures using a realistic backbone move set. Biophys J. 2011 Aug 17; 101(4):899-909.
    View in: PubMed
    Score: 0.019
  24. Mimicking the folding pathway to improve homology-free protein structure prediction. Proc Natl Acad Sci U S A. 2009 Mar 10; 106(10):3734-9.
    View in: PubMed
    Score: 0.016
  25. PII structure in the model peptides for unfolded proteins: studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins. 2006 May 01; 63(2):312-21.
    View in: PubMed
    Score: 0.013
  26. Large-scale context in protein folding: villin headpiece. Biochemistry. 2003 Jan 28; 42(3):664-71.
    View in: PubMed
    Score: 0.011
  27. Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide. Biochemistry. 1993 Apr 13; 32(14):3649-57.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.