The University of Chicago Header Logo

Connection

Tobin R. Sosnick to Molecular Sequence Data

This is a "connection" page, showing publications Tobin R. Sosnick has written about Molecular Sequence Data.
Connection Strength

1.180
  1. Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar. Proc Natl Acad Sci U S A. 2015 Jul 07; 112(27):8302-7.
    View in: PubMed
    Score: 0.093
  2. Investigating models of protein function and allostery with a widespread mutational analysis of a light-activated protein. Biophys J. 2013 Aug 20; 105(4):1027-36.
    View in: PubMed
    Score: 0.082
  3. The folding transition state of protein L is extensive with nonnative interactions (and not small and polarized). J Mol Biol. 2012 Jul 13; 420(3):220-34.
    View in: PubMed
    Score: 0.075
  4. Modeling large regions in proteins: applications to loops, termini, and folding. Protein Sci. 2012 Jan; 21(1):107-21.
    View in: PubMed
    Score: 0.073
  5. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy. J Am Chem Soc. 2010 Nov 24; 132(46):16352-3.
    View in: PubMed
    Score: 0.068
  6. Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol. 2008 Sep 19; 381(5):1362-81.
    View in: PubMed
    Score: 0.058
  7. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol. 2005 Sep 23; 352(3):712-22.
    View in: PubMed
    Score: 0.048
  8. Barrier-limited, microsecond folding of a stable protein measured with hydrogen exchange: Implications for downhill folding. Proc Natl Acad Sci U S A. 2004 Nov 02; 101(44):15639-44.
    View in: PubMed
    Score: 0.045
  9. Reduced contact order and RNA folding rates. J Mol Biol. 2004 Oct 01; 342(5):1359-65.
    View in: PubMed
    Score: 0.044
  10. Fast folding of a helical protein initiated by the collision of unstructured chains. Proc Natl Acad Sci U S A. 2004 Sep 14; 101(37):13478-82.
    View in: PubMed
    Score: 0.044
  11. Discerning the structure and energy of multiple transition states in protein folding using psi-analysis. J Mol Biol. 2004 Mar 19; 337(2):463-75.
    View in: PubMed
    Score: 0.043
  12. D/H amide isotope effect in model alpha-helical peptides. J Am Chem Soc. 2002 Nov 27; 124(47):13994-5.
    View in: PubMed
    Score: 0.039
  13. Contribution of hydrogen bonding to protein stability estimated from isotope effects. Biochemistry. 2002 Feb 19; 41(7):2120-9.
    View in: PubMed
    Score: 0.037
  14. Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nat Struct Biol. 2001 Dec; 8(12):1042-7.
    View in: PubMed
    Score: 0.037
  15. The thermodynamic origin of the stability of a thermophilic ribozyme. Proc Natl Acad Sci U S A. 2001 Apr 10; 98(8):4355-60.
    View in: PubMed
    Score: 0.035
  16. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry. 2000 Sep 12; 39(36):11107-13.
    View in: PubMed
    Score: 0.034
  17. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. Biochemistry. 1999 Dec 21; 38(51):16840-6.
    View in: PubMed
    Score: 0.032
  18. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A. 1999 Sep 14; 96(19):10699-704.
    View in: PubMed
    Score: 0.031
  19. Pathway modulation, circular permutation and rapid RNA folding under kinetic control. J Mol Biol. 1999 Feb 26; 286(3):721-31.
    View in: PubMed
    Score: 0.030
  20. Viscosity dependence of the folding kinetics of a dimeric and monomeric coiled coil. Biochemistry. 1999 Feb 23; 38(8):2601-9.
    View in: PubMed
    Score: 0.030
  21. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry. 1998 Oct 13; 37(41):14613-22.
    View in: PubMed
    Score: 0.029
  22. The role of helix formation in the folding of a fully alpha-helical coiled coil. Proteins. 1996 Apr; 24(4):427-32.
    View in: PubMed
    Score: 0.025
  23. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc Natl Acad Sci U S A. 2012 Feb 28; 109(9):3323-8.
    View in: PubMed
    Score: 0.019
  24. Mimicking the folding pathway to improve homology-free protein structure prediction. Proc Natl Acad Sci U S A. 2009 Mar 10; 106(10):3734-9.
    View in: PubMed
    Score: 0.015
  25. A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics. J Mol Biol. 2008 May 09; 378(4):943-53.
    View in: PubMed
    Score: 0.014
  26. PII structure in the model peptides for unfolded proteins: studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins. 2006 May 01; 63(2):312-21.
    View in: PubMed
    Score: 0.012
  27. Structural basis for altering the stability of homologous RNAs from a mesophilic and a thermophilic bacterium. RNA. 2006 Apr; 12(4):598-606.
    View in: PubMed
    Score: 0.012
  28. Mechanistic insights on the folding of a large ribozyme during transcription. Biochemistry. 2005 May 24; 44(20):7535-42.
    View in: PubMed
    Score: 0.012
  29. Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA. 2005 Feb; 11(2):234-9.
    View in: PubMed
    Score: 0.011
  30. Stepwise conversion of a mesophilic to a thermophilic ribozyme. J Mol Biol. 2003 Jul 04; 330(2):177-83.
    View in: PubMed
    Score: 0.010
  31. Large-scale context in protein folding: villin headpiece. Biochemistry. 2003 Jan 28; 42(3):664-71.
    View in: PubMed
    Score: 0.010
  32. The rate-limiting step in the folding of a large ribozyme without kinetic traps. Proc Natl Acad Sci U S A. 2002 Jun 25; 99(13):8518-23.
    View in: PubMed
    Score: 0.009
  33. Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry. 2001 Sep 18; 40(37):11202-10.
    View in: PubMed
    Score: 0.009
  34. Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations. Biochemistry. 2001 Mar 27; 40(12):3629-38.
    View in: PubMed
    Score: 0.009
  35. Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide. Biochemistry. 1993 Apr 13; 32(14):3649-57.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.