The University of Chicago Header Logo

Connection

Tobin R. Sosnick to Hydrogen Bonding

This is a "connection" page, showing publications Tobin R. Sosnick has written about Hydrogen Bonding.
Connection Strength

1.775
  1. Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects. Nat Struct Biol. 2002 Jun; 9(6):458-63.
    View in: PubMed
    Score: 0.211
  2. Contribution of hydrogen bonding to protein stability estimated from isotope effects. Biochemistry. 2002 Feb 19; 41(7):2120-9.
    View in: PubMed
    Score: 0.207
  3. Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different. J Mol Biol. 2020 04 17; 432(9):2882-2889.
    View in: PubMed
    Score: 0.180
  4. D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding. Nat Struct Biol. 2000 Jan; 7(1):62-71.
    View in: PubMed
    Score: 0.178
  5. A Membrane Burial Potential with H-Bonds and Applications to Curved Membranes and Fast Simulations. Biophys J. 2018 11 20; 115(10):1872-1884.
    View in: PubMed
    Score: 0.164
  6. Cooperative folding near the downhill limit determined with amino acid resolution by hydrogen exchange. Proc Natl Acad Sci U S A. 2016 Apr 26; 113(17):4747-52.
    View in: PubMed
    Score: 0.138
  7. Benchmarking all-atom simulations using hydrogen exchange. Proc Natl Acad Sci U S A. 2014 Nov 11; 111(45):15975-80.
    View in: PubMed
    Score: 0.125
  8. On docking, scoring and assessing protein-DNA complexes in a rigid-body framework. PLoS One. 2012; 7(2):e32647.
    View in: PubMed
    Score: 0.104
  9. Psi-constrained simulations of protein folding transition states: implications for calculating. J Mol Biol. 2009 Mar 06; 386(4):920-8.
    View in: PubMed
    Score: 0.084
  10. Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol. 2008 Sep 19; 381(5):1362-81.
    View in: PubMed
    Score: 0.080
  11. Barrier-limited, microsecond folding of a stable protein measured with hydrogen exchange: Implications for downhill folding. Proc Natl Acad Sci U S A. 2004 Nov 02; 101(44):15639-44.
    View in: PubMed
    Score: 0.062
  12. Dynamics of hydrogen bond desolvation in protein folding. J Mol Biol. 2002 Aug 23; 321(4):659-75.
    View in: PubMed
    Score: 0.054
  13. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry. 1998 Oct 13; 37(41):14613-22.
    View in: PubMed
    Score: 0.041
  14. Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci. 1997 May; 6(5):1101-9.
    View in: PubMed
    Score: 0.037
  15. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core. Proc Natl Acad Sci U S A. 2017 02 28; 114(9):2241-2246.
    View in: PubMed
    Score: 0.037
  16. Introduction of a polar core into the de novo designed protein Top7. Protein Sci. 2016 07; 25(7):1299-307.
    View in: PubMed
    Score: 0.034
  17. Minimalist representations and the importance of nearest neighbor effects in protein folding simulations. J Mol Biol. 2006 Nov 03; 363(4):835-57.
    View in: PubMed
    Score: 0.018
  18. Large-scale context in protein folding: villin headpiece. Biochemistry. 2003 Jan 28; 42(3):664-71.
    View in: PubMed
    Score: 0.014
  19. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14; 269(5221):192-7.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.