Loading...
The University of Chicago Header Logo
Keywords
Last Name
Institution

Mahesh P. Gupta

TitleProfessor
InstitutionUniversity of Chicago
DepartmentSurgery-Cardiac
AddressChicago IL 60637
vCardDownload vCard

    Collapse Overview 
    Collapse overview
    Primary focus of my lab is to understand the molecular basis of heart failure, particularly, the role played by the chromatin remodeling enzymes in muscle gene regulation, cellular senescence and cardiac hypertrophy and fibrosis. Heart failure is a pathological state in which the heart is unable to pump blood at a rate commensurate with requirements of the metabolizing tissues. It is usually caused by a defect in myocardial contraction. Reduced myocardial contractile function may reflect a decrease in number of viable myocytes, dysfunction of viable myocytes, or alterations to the intrinsic contractile activity of individual myocytes. At the molecular level, several abnormalities have been observed, including alterations in the expression of numerous genes that are central to the normal structure and function of the heart; however, the basic mechanism of heart failure is not yet fully understood. With recent advancements in cell biology, it has become clear that factors modifying chromatin structure, e.g. histone deacetylases, acetyltransferases and sirtuins play a fundamental role in this process. In addition to modifying chromatin structure, these enzymes also play a role out side the nucleus. We are trying to understand how these enzymes modify mitochondrial proteins and regulate the cell-survivability and contractile function, in response to various pathophysiological stresses, including obesity/diabetes, hemodynamic overloads and aging.


    Collapse Biography 
    Collapse education and training
    All India Institute of Medical Sciences, New DelhiMS and PhD1985Physiology and Pharmacology
    University of Chicago, ChicagoPost-doctoral training (mentor Dr. Radovan Zak)Cardiac cell biology
    Collapse awards and honors
    1989 - 1991Senior Reserach Fellowship , American Heart Association
    2016Member of the Scientific Advisory Board , International Academy of Cardiology
    2016Distinguished Fuculty, American Society of Nepharology
    2015Vincenzo Panagia Distinguished lecture award, University of Manitoba
    2008Fellow of American Heart Association (FAHA), Basic science council of American Heart Association
    1987Upjohn Award for the best research paper, International Society of Heart Reserach
    1984Institutional Award of merit , All India institute of Medical Sciences, New Delhi
    1980National Merit Scholarship, Board of Education Government of India

    Collapse ORNG Applications 
    Collapse Featured Presentations
    Collapse Websites

    Collapse Research 
    Collapse research activities and funding
    R01HL068083     (GUPTA, MAHESH P)Sep 30, 2001 - Jul 31, 2005
    NIH
    Alpha-Myosin Heavy Chain Gene Repression &Heart Failure
    Role: Principal Investigator

    R01HL077788     (GUPTA, MAHESH P)Aug 1, 2004 - May 31, 2009
    NIH
    Histone deacetylases in pathogenesis of heart failure
    Role: Principal Investigator

    R01HL083423     (GUPTA, MAHESH P)Mar 15, 2007 - Feb 28, 2013
    NIH
    The Role of PARP-SIR2 Signaling in Heart Failure
    Role: Principal Investigator

    R01HL111455     (GUPTA, MAHESH P)Feb 15, 2013 - Jan 31, 2017
    NIH
    Activation of sirtuins to prevent adverse cardiac remodeling after CABG
    Role: Principal Investigator

    R01HL117041     (GUPTA, MAHESH P)Jun 1, 2013 - Apr 30, 2017
    NIH
    Blocking cardiac toxicity of anticancer drugs
    Role: Principal Investigator

    R01HL136712     (GUPTA, MAHESH P)Jul 15, 2018 - Jun 30, 2022
    NIH
    Exploring roles of sirtuins in protecting diabetic hearts
    Role: Principal Investigator

    R01HL143488     (GUPTA, MAHESH P)Sep 1, 2018 - Jul 31, 2022
    NIH
    Improving post-surgery recovery of failing hearts by targeting cardiomyocyte senescence
    Role: Principal Investigator

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    List All   |   Timeline
    1. Kanwal A, Pillai VB, Samant S, Gupta M, Gupta MP. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. FASEB J. 2019 Oct; 33(10):10872-10888. PMID: 31318577.
      View in: PubMed
    2. Samant SA, Pillai VB, Gupta MP. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol. 2019 Apr; 97(4):235-245. PMID: 30407871.
      View in: PubMed
    3. Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta MP, Singh M, Sundaresan NR. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. Elife. 2018 03 05; 7. PMID: 29504933.
      View in: PubMed
    4. Sarikhani M, Mishra S, Desingu PA, Kotyada C, Wolfgeher D, Gupta MP, Singh M, Sundaresan NR. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH2-terminal kinase. Cell Death Differ. 2018 09; 25(9):1638-1656. PMID: 29449643.
      View in: PubMed
    5. Samant SA, Kanwal A, Pillai VB, Bao R, Gupta MP. The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep. 2017 09 19; 7(1):11877. PMID: 28928419.
      View in: PubMed
    6. Pillai VB, Kanwal A, Fang YH, Sharp WW, Samant S, Arbiser J, Gupta MP. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget. 2017 May 23; 8(21):34082-34098. PMID: 28423723.
      View in: PubMed
    7. Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 2017 03 24; 292(12):5123. PMID: 28341711.
      View in: PubMed
    8. Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor ß (TGFß1)-dependent paracrine mechanism. J Biol Chem. 2017 03 24; 292(12):5124. PMID: 28341712.
      View in: PubMed
    9. Nan J, Zhu W, Rahman MS, Liu M, Li D, Su S, Zhang N, Hu X, Yu H, Gupta MP, Wang J. Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta Mol Cell Res. 2017 Jul; 1864(7):1260-1273. PMID: 28342806.
      View in: PubMed
    10. Bindu S, Pillai VB, Kanwal A, Samant S, Mutlu GM, Verdin E, Dulin N, Gupta MP. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Physiol Lung Cell Mol Physiol. 2017 01 01; 312(1):L68-L78. PMID: 27815257.
      View in: PubMed
    11. Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW, Varga J. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 2016 Oct 25; 7(43):69321-69336. PMID: 27732568.
      View in: PubMed
    12. Bindu S, Pillai VB, Gupta MP. Role of Sirtuins in Regulating Pathophysiology of the Heart. Trends Endocrinol Metab. 2016 08; 27(8):563-573. PMID: 27210897.
      View in: PubMed
    13. Pillai VB, Bindu S, Sharp W, Fang YH, Kim G, Gupta M, Samant S, Gupta MP. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 2016 Apr 15; 310(8):H962-72. PMID: 26873966.
      View in: PubMed
    14. Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, Gupta MP. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3ß. Mol Cell Biol. 2015 Dec 14; 36(5):678-92. PMID: 26667039.
      View in: PubMed
    15. Tanaka A, Kawaji K, Patel AR, Tabata Y, Burke MC, Gupta MP, Ota T. In situ constructive myocardial remodeling of extracellular matrix patch enhanced with controlled growth factor release. J Thorac Cardiovasc Surg. 2015 Nov; 150(5):1280-90.e2. PMID: 26344683.
      View in: PubMed
    16. Samant SA, Pillai VB, Sundaresan NR, Shroff SG, Gupta MP. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity. J Biol Chem. 2015 Jun 19; 290(25):15559-69. PMID: 25911107.
      View in: PubMed
    17. Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D, Gupta MP. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun. 2015 Apr 14; 6:6656. PMID: 25871545.
      View in: PubMed
    18. Hu S, Liu H, Ha Y, Luo X, Motamedi M, Gupta MP, Ma JX, Tilton RG, Zhang W. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med. 2015 Feb; 79:176-85. PMID: 25476852.
      View in: PubMed
    19. Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res. 2014 Oct 15; 74(20):5925-33. PMID: 25320180.
      View in: PubMed
    20. Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor ß (TGFß1)-dependent paracrine mechanism. J Biol Chem. 2014 Sep 26; 289(39):27199-214. PMID: 25104350.
      View in: PubMed
    21. Alrob OA, Sankaralingam S, Ma C, Wagg CS, Fillmore N, Jaswal JS, Sack MN, Lehner R, Gupta MP, Michelakis ED, Padwal RS, Johnstone DE, Sharma AM, Lopaschuk GD. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc Res. 2014 Sep 01; 103(4):485-97. PMID: 24966184.
      View in: PubMed
    22. Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res. 2014 Jan 17; 114(2):368-78. PMID: 24436432.
      View in: PubMed
    23. Babitha V, Yadav VP, Chouhan VS, Hyder I, Dangi SS, Gupta M, Khan FA, Taru Sharma G, Sarkar M. Luteinizing hormone, insulin like growth factor-1, and epidermal growth factor stimulate vascular endothelial growth factor production in cultured bubaline granulosa cells. Gen Comp Endocrinol. 2014 Mar 01; 198:1-12. PMID: 24361167.
      View in: PubMed
    24. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014 Mar; 34(5):807-19. PMID: 24344202.
      View in: PubMed
    25. Velmurugan GV, Sundaresan NR, Gupta MP, White C. Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes. Cardiovasc Res. 2013 Oct 01; 100(1):143-50. PMID: 23715558.
      View in: PubMed
    26. Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 2013 Apr 19; 288(16):11216-32. PMID: 23447532.
      View in: PubMed
    27. Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, Gupta MP. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol. 2013 Feb 01; 304(3):H415-26. PMID: 23203961.
      View in: PubMed
    28. Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012 Nov; 18(11):1643-50. PMID: 23086477.
      View in: PubMed
    29. Govindan S, Sarkey J, Ji X, Sundaresan NR, Gupta MP, de Tombe PP, Sadayappan S. Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro. J Muscle Res Cell Motil. 2012 May; 33(1):17-30. PMID: 22527638.
      View in: PubMed
    30. Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, Gupta M. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J Biol Chem. 2012 Apr 13; 287(16):12913-26. PMID: 22367207.
      View in: PubMed
    31. Zieger MA, Gupta MP, Wang M. Proteomic analysis of endothelial cold-adaptation. BMC Genomics. 2011 Dec 22; 12:630. PMID: 22192797.
      View in: PubMed
    32. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011 Jul 19; 4(182):ra46. PMID: 21775285.
      View in: PubMed
    33. Pillai VB, Sundaresan NR, Samant SA, Wolfgeher D, Trivedi CM, Gupta MP. Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol Cell Biol. 2011 Jun; 31(11):2349-63. PMID: 21444723.
      View in: PubMed
    34. Sundaresan NR, Pillai VB, Gupta MP. Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol. 2011 Oct; 51(4):614-8. PMID: 21276800.
      View in: PubMed
    35. Samant SA, Courson DS, Sundaresan NR, Pillai VB, Tan M, Zhao Y, Shroff SG, Rock RS, Gupta MP. HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem. 2011 Feb 18; 286(7):5567-77. PMID: 21177250.
      View in: PubMed
    36. McConville JF, Fernandes DJ, Churchill J, Dewundara S, Kogut P, Shah S, Fuchs G, Kedainis D, Bellam SK, Patel NM, McCauley J, Dulin NO, Gupta MP, Adam S, Yoneda Y, Camoretti-Mercado B, Solway J. Nuclear import of serum response factor in airway smooth muscle. Am J Respir Cell Mol Biol. 2011 Sep; 45(3):453-8. PMID: 21131446.
      View in: PubMed
    37. Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP. Mitochondrial SIRT3 and heart disease. Cardiovasc Res. 2010 Nov 01; 88(2):250-6. PMID: 20685942.
      View in: PubMed
    38. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010 Jan 29; 285(5):3133-44. PMID: 19940131.
      View in: PubMed
    39. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009 Sep; 119(9):2758-71. PMID: 19652361.
      View in: PubMed
    40. Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol. 2009 Aug; 29(15):4116-29. PMID: 19470756.
      View in: PubMed
    41. Zieger MA, Gupta MP. Hypothermic preconditioning of endothelial cells attenuates cold-induced injury by a ferritin-dependent process. Free Radic Biol Med. 2009 Mar 01; 46(5):680-91. PMID: 19135523.
      View in: PubMed
    42. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008 Oct; 28(20):6384-401. PMID: 18710944.
      View in: PubMed
    43. Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008 Apr 11; 283(15):10135-46. PMID: 18250163.
      View in: PubMed
    44. Pillai JB, Chen M, Rajamohan SB, Samant S, Pillai VB, Gupta M, Gupta MP. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol. 2008 Mar; 294(3):H1388-97. PMID: 18192211.
      View in: PubMed
    45. Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol. 2007 Oct; 43(4):388-403. PMID: 17720186.
      View in: PubMed
    46. Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C. Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol. 2007 Oct; 27(19):6718-32. PMID: 17636017.
      View in: PubMed
    47. Gupta M, Sueblinvong V, Gupta MP. The single-strand DNA/RNA-binding protein, Purbeta, regulates serum response factor (SRF)-mediated cardiac muscle gene expression. Can J Physiol Pharmacol. 2007 Mar-Apr; 85(3-4):349-59. PMID: 17612644.
      View in: PubMed
    48. Zieger MA, Gupta MP, Siddiqui RA. Endothelial cell fatty acid unsaturation mediates cold-induced oxidative stress. J Cell Biochem. 2006 Oct 15; 99(3):784-96. PMID: 16676360.
      View in: PubMed
    49. Han YJ, Hu WY, Chernaya O, Antic N, Gu L, Gupta M, Piano M, de Lanerolle P. Increased myosin light chain kinase expression in hypertension: Regulation by serum response factor via an insertion mutation in the promoter. Mol Biol Cell. 2006 Sep; 17(9):4039-50. PMID: 16822834.
      View in: PubMed
    50. Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP. Poly(ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2006 Oct; 291(4):H1545-53. PMID: 16632544.
      View in: PubMed
    51. Zieger MA, Gupta MP. Endothelial cell preservation at 10 degrees C minimizes catalytic iron, oxidative stress, and cold-induced injury. Cell Transplant. 2006; 15(6):499-510. PMID: 17121161.
      View in: PubMed
    52. Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005 Dec 30; 280(52):43121-30. PMID: 16207712.
      View in: PubMed
    53. Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys. 2005; 43(1):61-76. PMID: 16043884.
      View in: PubMed
    54. Davis FJ, Pillai JB, Gupta M, Gupta MP. Concurrent opposite effects of trichostatin A, an inhibitor of histone deacetylases, on expression of alpha-MHC and cardiac tubulins: implication for gain in cardiac muscle contractility. Am J Physiol Heart Circ Physiol. 2005 Mar; 288(3):H1477-90. PMID: 15388503.
      View in: PubMed
    55. Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP. Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol. 2005 Feb; 288(2):H486-96. PMID: 15374823.
      View in: PubMed
    56. Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta MP. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem. 2003 Nov 07; 278(45):44935-48. PMID: 12933792.
      View in: PubMed
    57. Davis FJ, Gupta M, Camoretti-Mercado B, Schwartz RJ, Gupta MP. Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem. 2003 May 30; 278(22):20047-58. PMID: 12663674.
      View in: PubMed
    58. Maeda T, Gupta MP, Stewart AF. TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochem Biophys Res Commun. 2002 Jun 21; 294(4):791-7. PMID: 12061776.
      View in: PubMed
    59. Davis FJ, Gupta M, Pogwizd SM, Bacha E, Jeevanandam V, Gupta MP. Increased expression of alternatively spliced dominant-negative isoform of SRF in human failing hearts. Am J Physiol Heart Circ Physiol. 2002 Apr; 282(4):H1521-33. PMID: 11893590.
      View in: PubMed
    60. Gupta M, Kogut P, Davis FJ, Belaguli NS, Schwartz RJ, Gupta MP. Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1. J Biol Chem. 2001 Mar 30; 276(13):10413-22. PMID: 11136726.
      View in: PubMed
    61. Gupta MP, Kogut P, Gupta M. Protein kinase-A dependent phosphorylation of transcription enhancer factor-1 represses its DNA-binding activity but enhances its gene activation ability. Nucleic Acids Res. 2000 Aug 15; 28(16):3168-77. PMID: 10931933.
      View in: PubMed
    Gupta's Networks
    Click the "See All" links for more information and interactive visualizations!
    Concepts Expand Description
    _
    Co-Authors Expand Description
    _
    Similar People Expand Description
    _
    Same Department Expand Description
    Physical Neighbors Expand Description
    _