The University of Chicago Header Logo

Peter Savage

TitleAssociate Professor
InstitutionUniversity of Chicago
DepartmentPathology
AddressChicago IL 60637
vCardDownload vCard

    Collapse Overview 
    Collapse overview
    Regulation of immune tolerance and anti-tumor immunity

    The goal of our research program is to understand the cellular and molecular mechanisms regulating immune tolerance and the immune response to cancer. Current major projects include:

    1. Development and function of tumor-associated regulatory T cells

    Foxp3+ regulatory T (Treg) cells are critical for the suppression of autoimmunity and the regulation of immune homeostasis, and are often prevalent in human cancers. Many emerging therapeutic strategies for the treatment of cancer have focused on the modulation or depletion of Tregs concomitant with vaccination or cell transfer, in order to stimulate effective anti-tumor immune responses. Yet despite this intense interest in modulating Tregs in the context of cancer, fundamental questions regarding the biology of tumor-associated Tregs remain unanswered. Specifically, the developmental origins, antigen specificity, and in situ function of tumor-infiltrating Tregs are not well understood. Using mouse models of prostate cancer (Malchow et al Science 2013) and carcinogen-induced head-and-neck squamous cell carcinoma, our goal is to elucidate the fundamental rules by which Tregs function in the context of cancer. In essence, we aim to understand the “life cycle” of a tumor-infiltrating Treg, starting from its development in the thymus or periphery, its circulation throughout the body, its activation and recruitment into a developing neoplasm, and the functional role that the cell plays in shaping tumor development and metastasis.

    2. Antigen specificity of thymus-derived Treg cells

    A large body of indirect evidence suggests that thymus-derived Treg (tTreg) cells recognize autologus antigens. However, the major self-antigens recognized by Treg cells have remained largely undefined, representing a major barrier to the understanding of immune regulation. Recently, in collaboration with Dr. Erin Adams at the University of Chicago, we identified natural Treg cell ligands in mice (Leonard, Gilmore, et al. Immunity 2017). We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the second associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. Based on these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self proteins that are most susceptible to autoimmune attack, and we suggest that this link may be exploited as a generalizable strategy to identify the Treg cell antigens relevant to human autoimmunity. Moving forward, we are using this model system to define the role of cognate antigen in coordinating Treg development and peripheral homeostasis, to characterize endogenous antigen-specific Treg cell populations at steady state and in disease contexts using pMHC tetramers, and to understand the molecular basis of ligand recognition by tTreg cells.

    3. Aire and the establishment of immune tolerance

    The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by Autoimmune Regulator (Aire), is essential for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3+ Treg cells (Malchow et al. Science 2013), suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. In recent work (Malchow et al. Immunity 2016), our examination of autoimmune lesions in Aire-/- mice revealed an unexpected third possibility. We found that the predominant conventional T cell clones infiltrating target lesions express antigen receptors that are preferentially expressed by Foxp3+ Treg cells in Aire+/+ mice. Our results reveal that a primary mechanism by which Aire functions is to ensure that distinct autoreactive T cell specificities differentiate into the Treg cell lineage. Dysregulation of this process results in the emergence of "T-rogues" - Treg-biased specificities that are mis-directed into the T conventional subset and "go rogue" in the absence of Aire.

    4. Role of dendritic cells in the development and function of Treg cells

    The recognition of self antigen is critical for many aspects of Treg cell biology, including development, homeostasis, anatomical distribution, and function. However, little is known about the identity of the cell types that present self antigen for recognition by Treg cells. The identity of the "dance partners" that interface with Treg cells at various anatomical sites is likely to reveal new insights into Treg cell biology and immune regulation. In a recent study, we identified a pivotal role for dendritic cells (DCs) in coordinating the development and homeostasis of an archetypal population of Aire-dependent organ-specific Treg cells (Leventhal et al., Immunity 2016). The thymic development of this Treg population required antigen presentation and co-stimulatory signals provided by DCs, implying that Aire-dependent antigen must be transferred from medullary thymic epithelial cells to DCs. In the periphery, the activation and enrichment of organ-specific Treg cells in the organ-draining lymph nodes required CCR7-dependent migratory DCs, implying a unique role for migratory DCs in supporting the peripheral activation of organ-specific Treg cells. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.
    Collapse webpage

    Collapse Biography 
    Collapse education and training
    Stanford University School of Medicine, Stanford, CAPhD04/2000Cancer Biology
    University of California Berkeley, Berkeley, CA09/2004Cancer Immunology
    Memorial Sloan-Kettering Cancer Center, New York, NY06/2009Cancer Immunology
    University of VirginiaBA1993Biochemistry
    Collapse awards and honors
    2001 - 2004Postdoctoral Fellow, Damon Runyon Cancer Research Fund
    2010 - 2011Young Investigator Award, Cancer Research Foundation
    2010 - 2012Investigator Award, Cancer Research Institute

    Collapse Research 
    Collapse research activities and funding
    U01AI154560     (SAVAGE, PETER AIDAN)May 1, 2021 - Apr 30, 2026
    NIH
    Specificity of regulatory T cell suppression during infection
    Role: Principal Investigator

    R01AI150047     (SAVAGE, PETER AIDAN)Jun 17, 2020 - May 31, 2025
    NIH
    Differentiation and function of intratumoral memory-phenotype CD8+ T cells
    Role: Principal Investigator

    R01AI126756     (ADAMS, ERIN JUNE)Jun 1, 2016 - May 31, 2021
    NIH
    Biochemical and cellular analysis of regulatory T cells reactive to a natural self antigen
    Role: Co-Principal Investigator

    R01AI110507     (SAVAGE, PETER AIDAN)Jan 1, 2015 - Dec 31, 2019
    NIH
    Function of Aire-dependent regulatory T cells in immune tolerance
    Role: Principal Investigator

    R56AI110507     (SAVAGE, PETER AIDAN)Aug 1, 2014 - Dec 31, 2014
    NIH
    Function of Aire-dependent regulatory T cells in immune tolerance
    Role: Principal Investigator

    R21AI112758     (SAVAGE, PETER AIDAN)May 15, 2014 - Apr 30, 2016
    NIH
    Identification of a prostate antigen recognized by endogenous regulatory T cells
    Role: Principal Investigator

    R01CA160371     (SAVAGE, PETER AIDAN)Sep 1, 2011 - Jul 31, 2016
    NIH
    Development and specificity of endogeneous tumor-infiltrating regulatory T cells
    Role: Principal Investigator

    T32AI007090     (SAVAGE, PETER AIDAN)Jul 1, 1979 - Jun 30, 2024
    NIH
    Interdisciplinary Training Program in Immunology
    Role: Principal Investigator

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4+ T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol. 2023 03; 24(3):487-500. PMID: 36759711; PMCID: PMC9992328.
      Citations: 4     Fields:    Translation:HumansAnimalsCells
    2. Chao JL, Korzinkin M, Zhavoronkov A, Ozerov IV, Walker MT, Higgins K, Lingen MW, Izumchenko E, Savage PA. Effector T cell responses unleashed by regulatory T cell ablation exacerbate oral squamous cell carcinoma. Cell Rep Med. 2021 09 21; 2(9):100399. PMID: 34622236; PMCID: PMC8484691.
      Citations: 8     Fields:    Translation:HumansAnimalsCells
    3. Wong HS, Park K, Gola A, Baptista AP, Miller CH, Deep D, Lou M, Boyd LF, Rudensky AY, Savage PA, Tsang JS, Germain RN, Altan-Bonnet G. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell. 2021 07 22; 184(15):3981-3997.e22. PMID: 34157301; PMCID: PMC8390950.
      Citations: 34     Fields:    Translation:AnimalsCells
    4. Klawon DEJ, Gilmore DC, Leonard JD, Miller CH, Chao JL, Walker MT, Duncombe RK, Tung KS, Adams EJ, Savage PA. Altered selection on a single self-ligand promotes susceptibility to organ-specific T cell infiltration. J Exp Med. 2021 06 07; 218(6). PMID: 33914024; PMCID: PMC8091134.
      Citations: 3     Fields:    Translation:AnimalsCells
    5. Miller CH, Klawon DEJ, Zeng S, Lee V, Socci ND, Savage PA. Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells. Nat Immunol. 2020 05; 21(5):567-577. PMID: 32284593; PMCID: PMC7193531.
      Citations: 35     Fields:    Translation:AnimalsCells
    6. Savage PA, Klawon DEJ, Miller CH. Regulatory T Cell Development. Annu Rev Immunol. 2020 04 26; 38:421-453. PMID: 31990619.
      Citations: 93     Fields:    Translation:HumansAnimalsCells
    7. MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA, Kline J. Negligible Role for Deletion Mediated by cDC1 in CD8+ T Cell Tolerance. J Immunol. 2019 05 01; 202(9):2628-2635. PMID: 30902900; PMCID: PMC6478510.
      Citations: 5     Fields:    Translation:AnimalsCells
    8. Nalle SC, Zuo L, Ong MLDM, Singh G, Worthylake AM, Choi W, Manresa MC, Southworth AP, Edelblum KL, Baker GJ, Joseph NE, Savage PA, Turner JR. Graft-versus-host disease propagation depends on increased intestinal epithelial tight junction permeability. J Clin Invest. 2019 02 01; 129(2):902-914. PMID: 30667372; PMCID: PMC6355225.
      Citations: 34     Fields:    Translation:AnimalsCells
    9. Chao JL, Savage PA. Unlocking the Complexities of Tumor-Associated Regulatory T Cells. J Immunol. 2018 01 15; 200(2):415-421. PMID: 29311383; PMCID: PMC5763514.
      Citations: 35     Fields:    Translation:HumansAnimalsCells
    10. Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity. 2017 07 18; 47(1):107-117.e8. PMID: 28709804; PMCID: PMC5562039.
      Citations: 35     Fields:    Translation:AnimalsCells
    11. Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity. 2016 05 17; 44(5):1102-13. PMID: 27130899; PMCID: PMC4871732.
      Citations: 105     Fields:    Translation:AnimalsCells
    12. Leventhal DS, Gilmore DC, Berger JM, Nishi S, Lee V, Malchow S, Kline DE, Kline J, Vander Griend DJ, Huang H, Socci ND, Savage PA. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells. Immunity. 2016 Apr 19; 44(4):847-59. PMID: 27037189; PMCID: PMC4842258.
      Citations: 58     Fields:    Translation:AnimalsCells
    13. Lee V, Savage PA. Close Encounters of the Tertiary Kind. Immunity. 2015 Sep 15; 43(3):418-20. PMID: 26377895.
      Citations: 1     Fields:    Translation:AnimalsCells
    14. Kreymborg K, Haak S, Murali R, Wei J, Waitz R, Gasteiger G, Savage PA, van den Brink MR, Allison JP. Ablation of B7-H3 but Not B7-H4 Results in Highly Increased Tumor Burden in a Murine Model of Spontaneous Prostate Cancer. Cancer Immunol Res. 2015 Aug; 3(8):849-54. PMID: 26122284; PMCID: PMC5939565.
      Citations: 21     Fields:    Translation:HumansAnimalsCells
    15. Chen X, Fosco D, Kline DE, Meng L, Nishi S, Savage PA, Kline J. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol. 2014 Sep; 44(9):2603-16. PMID: 24975127; PMCID: PMC4165701.
      Citations: 54     Fields:    Translation:AnimalsCells
    16. Nalle SC, Kwak HA, Edelblum KL, Joseph NE, Singh G, Khramtsova GF, Mortenson ED, Savage PA, Turner JR. Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Sci Transl Med. 2014 Jul 02; 6(243):243ra87. PMID: 24990882; PMCID: PMC4161673.
      Citations: 28     Fields:    Translation:AnimalsCells
    17. Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev. 2014 May; 259(1):245-58. PMID: 24712470; PMCID: PMC4122093.
      Citations: 35     Fields:    Translation:HumansAnimalsCells
    18. Savage PA. Tumor antigenicity revealed. Trends Immunol. 2014 Feb; 35(2):47-8. PMID: 24439426; PMCID: PMC3932747.
      Citations: 4     Fields:    Translation:HumansAnimalsCells
    19. Malchow S, Leventhal DS, Savage PA. Organ-specific regulatory T cells of thymic origin are expanded in murine prostate tumors. Oncoimmunology. 2013 Jul 01; 2(7):e24898. PMID: 24073374; PMCID: PMC3782164.
      Citations: 6     Fields:    
    20. Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP, Socci ND, Savage PA. Aire-dependent thymic development of tumor-associated regulatory T cells. Science. 2013 Mar 08; 339(6124):1219-24. PMID: 23471412; PMCID: PMC3622085.
      Citations: 178     Fields:    Translation:AnimalsCells
    21. Jain N, Liu H, Artz AS, Anastasi J, Odenike O, Godley LA, Joseph L, Marino S, Kline J, Nguyen V, Schouten V, Kunnavakkam R, Larson RA, Stock W, Ulaszek J, Savage PA, Wickrema A, van Besien K. Immune reconstitution after combined haploidentical and umbilical cord blood transplant. Leuk Lymphoma. 2013 Jun; 54(6):1242-9. PMID: 23088744.
      Citations: 11     Fields:    Translation:HumansCells
    22. Savage PA, Malchow S, Leventhal DS. Basic principles of tumor-associated regulatory T cell biology. Trends Immunol. 2013 Jan; 34(1):33-40. PMID: 22999714; PMCID: PMC3534814.
      Citations: 49     Fields:    Translation:HumansAnimalsCells
    23. Donkor MK, Sarkar A, Savage PA, Franklin RA, Johnson LK, Jungbluth AA, Allison JP, Li MO. T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-ß1 cytokine. Immunity. 2011 Jul 22; 35(1):123-34. PMID: 21757379; PMCID: PMC3430371.
      Citations: 73     Fields:    Translation:HumansAnimalsCells
    24. Savage PA, Vosseller K, Kang C, Larimore K, Riedel E, Wojnoonski K, Jungbluth AA, Allison JP. Recognition of a ubiquitous self antigen by prostate cancer-infiltrating CD8+ T lymphocytes. Science. 2008 Jan 11; 319(5860):215-20. PMID: 18187659.
      Citations: 45     Fields:    Translation:AnimalsCells
    25. Smith NL, Savage PJ, Heckbert SR, Barzilay JI, Bittner VA, Kuller LH, Psaty BM. Glucose, blood pressure, and lipid control in older people with and without diabetes mellitus: the Cardiovascular Health Study. J Am Geriatr Soc. 2002 Mar; 50(3):416-23. PMID: 11943034.
      Citations: 22     Fields:    Translation:Humans
    26. Savage PA, Davis MM. A kinetic window constricts the T cell receptor repertoire in the thymus. Immunity. 2001 Mar; 14(3):243-52. PMID: 11290334.
      Citations: 26     Fields:    Translation:AnimalsCells
    27. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999 Jun; 5(6):677-85. PMID: 10371507.
      Citations: 286     Fields:    Translation:HumansCells
    28. Savage PA, Boniface JJ, Davis MM. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity. 1999 Apr; 10(4):485-92. PMID: 10229191.
      Citations: 177     Fields:    Translation:AnimalsCells
    29. Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol. 1999 Feb 15; 162(4):2227-34. PMID: 9973498.
      Citations: 124     Fields:    Translation:HumansCells
    30. Davis MM, Krummel MF, Savage PA, Xu J, Sumen C, Dustin ML, Chien YH, Wülfing C. Visualizing T-cell recognition. Cold Spring Harb Symp Quant Biol. 1999; 64:243-51. PMID: 11232292.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    31. Archer SL, Liu K, Dyer AR, Ruth KJ, Jacobs DR, Van Horn L, Hilner JE, Savage PJ. Relationship between changes in dietary sucrose and high density lipoprotein cholesterol: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998 Oct; 8(7):433-8. PMID: 9738689.
      Citations: 5     Fields:    Translation:Humans
    32. Howard BV, Zech L, Davis M, Bennion LJ, Savage PJ, Nagulesparan M, Bilheimer D, Bennett PH, Grundy SM. Studied of very low density lipoprotein triglyceride metabolism in an obese population with low plasma lipids: lack of influence of body weight or plasma insulin. J Lipid Res. 1980 Nov; 21(8):1032-41. PMID: 7007543.
      Citations: 3     Fields:    Translation:Humans
    33. Howard BV, Savage PJ, Nagulesparan M, Bennion LJ, Davis M, Bennett PH. Changes in plasma lipoproteins accompanying diet therapy in obese diabetics. Atherosclerosis. 1979 Aug; 33(4):445-56. PMID: 228683.
      Citations: 3     Fields:    Translation:Humans
    Savage's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (209)
    Explore
    _
    Co-Authors (18)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _